Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 13(7): 240, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37337524

ABSTRACT

In this study, we evaluated the independent anticancer properties of a novel heat-stable lysozyme derived from the thermophilic bacterium Bacillus paralicheniformis (BplzC) to identify potential alternative therapies to address the suboptimal outcomes of current cancer treatments. Using the String 10.5 database, an in-silico protein-protein interaction study predicted that BplzC was a strong functional partner of cytochrome c, indicating a potential role in cancer cell apoptosis. Further, the HDOCK server predicted that BplzC strongly bound to cell death receptors, such as cytokines FAS receptor, leading to activation of cytochrome c and subsequent apoptosis in the cancer cell line. In vitro assays demonstrated uniform apoptotic activity of BplzC against various cancer cell lines, while showing no apoptotic activity against normal non-cancer cell lines. And showing no apoptotic activity against normal non-cancer cell lines suggested a very specific mode of action and without any adverse side effects. Additionally, BplzC exhibited ROS scavenging activity and reducing ability comparable to ascorbic acid, and significantly accelerated HEK293 cell migration. Our findings suggest that BplzC has specific cytotoxic effects on cancer cells and may be a valuable natural source of antioxidants for future use in the nutritional and pharmaceutical sectors.

2.
J Vector Borne Dis ; 58(1): 85-89, 2021.
Article in English | MEDLINE | ID: mdl-34818868

ABSTRACT

BACKGROUND & OBJECTIVES: Malaria is one of the most infectious and life-threatening vector borne disease in the tropics. Climate change can significantly influence malaria epidemiology and expansion of malaria vectors to hilly regions of Himachal Pradesh in India, hitherto considered areas of low transmission. Entomological surveillance in Kangra district of Himachal Pradesh revealed high density of a proven efficient vector of malaria, Anopheles fluviatilis, but transmission intensity of malaria was found very low. It was therefore considered prudent to investigate the sibling-species composition of An. fluviatilis complex in Kangra valley to ascertain their role in transmission of malaria. METHODS: The study was undertaken in six villages in Kangra district of Himachal Pradesh, India. A total of 4446 mosquitoes were collected during the one-year study period (2018) and processed in pools of ten for molecular characterization. DNA extraction and multiplex PCR was performed on 900 An. fluviatilis mosquitoes for differentiation of sibling-species. ELISA was used to detect Plasmodium falciparum and Plasmodium vivax circumsporozoite proteins in 3790 An. fluviatilis samples. RESULTS: Among prevalent mosquito species, An. fluviatilis was the predominant species constituting 69.5% of total mosquito collection. Sibling-species U was found in 92.22% and species T in 7.78% samples assayed. ELISA confirmed the absence of evidence of malaria parasite in any of the An. fluviatilis mosquitoes screened. Based on the difference in the sequences of conserved regions of the 28SrDNA, sibling-species U was confirmed as prevalent in the study villages. INTERPRETATION & CONCLUSION: Study revealed that in Kangra district, An. fluviatilis sibling-species U is predominant followed by species T, and both are non-vectors. The absence of malaria parasite and zoophagic nature of An. fluviatilis established through blood meal analysis, confirmed that both U and T are non-vector sibling-species.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Animals , Humans , India/epidemiology , Malaria/epidemiology , Mosquito Vectors , Prevalence , Siblings
3.
Arch Microbiol ; 203(5): 2059-2073, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33575852

ABSTRACT

The hot spring water of Atri in India was believed to have disease curing property. An antibacterial producing organism was isolated and identified as Bacillus paralicheniformis by morphology, microscopy, and 16S-rRNA. Its secretion inhibited bacteria, yeast, and fungus in well-diffusion-method. The secreted antimicrobial was a 16.74 kDa protein homologous of chicken-lysozyme-C. The novel lysozyme's activities were recorded under different parameters. It was active from pH 5-9 and endured up to 60 °C for 120 min. Complete cell wall lysis of S. flexneri and P. aeruginosa was observed under a microscope at 4500× with a minimum inhibitory concentration of 7.8 µg/ml, while others required a higher dose, i.e., 13 µg/ml, and 20 µg/ml for E.coli and S. typhimurium, respectively. The discovered lysozyme has the extraordinary potential to lyse Gram-positive bacteria, yeast, fungus, and more efficiently lyse chick-lysozyme-C resistant lipopolysaccharide rich Gram-negative bacteria's outer cell wall.


Subject(s)
Bacillus/enzymology , Muramidase/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/pharmacology , Chickens , Drug Resistance/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Fungi/drug effects , India , Microbial Sensitivity Tests , Muramidase/genetics , Muramidase/isolation & purification , Pseudomonas aeruginosa/drug effects , RNA, Ribosomal, 16S/genetics
4.
Infect Genet Evol ; 41: 47-55, 2016 07.
Article in English | MEDLINE | ID: mdl-26988711

ABSTRACT

Considering malaria as a local and focal disease, epidemiological understanding of different ecotypes of malaria can help in devising novel control measures. One of the major hurdles in malaria control lies on the evolution and dispersal of the drug-resistant malaria parasite, Plasmodium falciparum. We herewith present data on genetic variation at the Single Nucleotide Polymorphism (SNP) level in four different genes of P. falciparum (Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps) that confer resistance to different antimalarials in two different eco-epidemiological settings, i.e. Hilly-Forest (HF) and Riverine-Plain (RP), in a high malaria endemic district of Odisha state, India. Greater frequency of antimalarial resistance conferring SNPs and haplotypes was observed in all four genes in P. falciparum, and Pfdhps was the most variable gene among the four. No significant genetic differentiation could be observed in isolates from HF and RP ecotypes. Twelve novel, hitherto unreported nucleotide mutations could be observed in the Pfmdr1 and Pfdhps genes. While the Pfdhps gene presented highest haplotype diversity, the Pfcrt gene displayed the highest nucleotide diversity. When the data on all the four genes were complied, the isolates from HF ecotype were found to harbour higher average nucleotide diversity than those coming from RP ecotype. High and positive Tajima's D values were obtained for the Pfcrt and Pfdhfr genes in isolates from both the HF and RP ecotypes, with statistically significant deviation from neutrality in the RP ecotype. Different patterns of Linkage Disequilibrium (LD) among SNPs located in different drug-resistant genes were found in the isolates collected from HF and RP ecotypes. Whereas in the HF ecotype, SNPs in the Pfmdr1 and Pfdhfr were significantly associated, in the RP ecotype, SNPs located in Pfcrt were associated with Pfmdr1, Pfdhfr and Pfdhps. These findings provide a baseline understanding on how different micro eco-epidemiological settings influence evolution and spread of different drug resistance alleles. Our findings further suggest that drug resistance to chloroquine and sulfadoxine-pyrimethamine is approaching fixation level, which requires urgent attention of malaria control programme in India.


Subject(s)
Dihydropteroate Synthase/genetics , Drug Resistance/genetics , Malaria, Falciparum/epidemiology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , Alleles , Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Combinations , Ecotype , Gene Expression , Haplotypes , Humans , India/epidemiology , Linkage Disequilibrium , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/growth & development , Polymorphism, Single Nucleotide , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology
5.
Parasit Vectors ; 7: 265, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24912923

ABSTRACT

Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized.


Subject(s)
Ecosystem , Forests , Malaria/transmission , Animals , Culicidae/parasitology , Culicidae/physiology , Humans , Malaria/parasitology , Plasmodium/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...