Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 62(4): 624-640, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-33561287

ABSTRACT

Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.


Subject(s)
Adaptation, Biological/genetics , Iron/toxicity , Oryza/genetics , Plant Proteins/genetics , Adaptation, Biological/drug effects , Crops, Agricultural/genetics , Domestication , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Homeostasis/drug effects , Homeostasis/genetics , India , Iron/metabolism , Oryza/drug effects , Oryza/physiology , Stress, Physiological/drug effects , Stress, Physiological/genetics
2.
Protoplasma ; 258(2): 289-299, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33070240

ABSTRACT

Iron (Fe) toxicity is one of the major abiotic stresses which limits the yield of lowland rice. This study aims to investigate the physiological, biochemical, and molecular aspects of two contrasting aromatic Joha rice, viz., Keteki and Kola Joha of Assam. Oxidative damage caused due to Fe2+ toxicity was quantitatively determined. Fe2+ toxicity in the growth medium increases the level of ROS and anti-oxidative enzyme activity. Along with the aforementioned damage caused due to Fe2+ toxicity, chlorophyll content decreases in both the rice varieties. Detection of Fe3+ and Fe2+ was also conducted by Perls' Prussian and Turnbull blue method, respectively. In addition, spectrophotometric quantification of Fe2+ was determined by 2, 2'-Bipyridyl (Bpy). Above 2.5 mM, Fe2+ toxicity was found to be lethal in rice seedlings affecting their total growth and biomass. Gene expression analysis of iron-regulated transporter 1 (OsIRT1), Yellow Stripe-Like 15 (OsYSL15), and ferritin 1 (OsFer1) revealed the differential gene expression over a time period of Fe2+ toxicity. Our study suggested that the different parameters which are considered here can be helpful for the better understanding of how aromatic Joha rice performed under Fe2+ toxicity which can also help to reveal broader aspects that how gene players are involved in the iron homeostasis mechanism in Joha rice in coming future.


Subject(s)
Chlorophyll/chemistry , Iron/metabolism , Oryza/chemistry , Seedlings/chemistry , India
3.
Physiol Mol Biol Plants ; 26(8): 1541-1549, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32801485

ABSTRACT

Proper transport of metal and their homeostasis is very crucial for the growth and development of plants. Plants root are the primary organs which comes in contact with the stress and thus few modifications occurs, often determining the nutrient efficiency or sometimes as a stress tolerance mechanism. Plant utilizes two strategies for the uptake of iron viz, strategy I-reduction based and strategy II-chelation based. In this review we attempted for a better understanding of how the chelators acts in the mechanism of iron uptake from soils to plants and how iron is distributed in the plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...