Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(6): 525, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720137

ABSTRACT

Adiyaman, a city recently affected by an earthquake, is facing significant air pollution challenges due to both anthropogenic activities and natural events. The sources of air pollution have been investigated using meteorological variables. Elevated southerly winds, especially prominent in spring and autumn, significantly contribute to dust transport, leading to a decline in local air quality as detected by the HYSPLIT model. Furthermore, using Suomi-NPP Thermal Anomaly satellite product, it is detected and analyzed for crop burning activities. Agricultural practices, including stubble burning, contribute to the exacerbation of PM10 pollution during the summer months, particularly when coupled with winds from all directions except the north. In fall and winter months, heating is identified as the primary cause of pollution. The city center located north of the station is the dominant source of pollution throughout all seasons. The study established the connection between air pollutants and meteorological variables. Furthermore, the Spearman correlation coefficients reveal associations between PM10 and SO2, indicating moderate positive correlations under pressure conditions (r = 0.35, 0.52). Conversely, a negative correlation is observed with windspeed (r = -0.35, -0.50), and temperature also exhibits a negative correlation (r = -0.39, -0.54). During atmospheric conditions with high pressure, PM10 and SO2 concentrations are respectively 41.2% and 117.2% higher. Furthermore, pollutant concentration levels are 29.2% and 53.3% higher on days with low winds. Last, practical strategies for mitigating air pollution have been thoroughly discussed and proposed. It is imperative that decision-makers engaged in city planning and renovation give careful consideration to the profound impact of air pollution on both public health and the environment, particularly in the aftermath of a recent major earthquake.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Seasons , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Particulate Matter/analysis , Meteorological Concepts , Wind , Cities , Turkey , Sulfur Dioxide/analysis , Earthquakes
2.
Int J Biometeorol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656352

ABSTRACT

Thermal indices and thermal comfort maps have great importance in developing health-minded climate action strategies and livable urban layouts. Especially in cities where vulnerability to heatwaves is high, it is necessary to detect the most appropriate indicators for the regional characteristics and action planning with respect to thermal comfort. The aim of the study is to examine thermal indices as indicators of regional climate characteristics by relating to meteorological parameters and spatial features. Atmospheric variables including air temperature, wind speed, cloud cover, and relative humidity data were obtained from 30 meteorological stations located in districts having different climatic features. Heat stress levels for apparent temperature (AT), heat index (HI), wet bulb globe temperature (WBGT), physiological equivalent temperature (PET), universal thermal climate index (UTCI), and perceived temperature (PT) indices were calculated and associated with meteorological parameters. Thermal comfort maps have been created with the daily mean and maximum values of all indices. As a result, the meteorological parameters with the strongest correlation with all thermal indices are air temperature (Ta) with r = 0.89 ± 0.01 and mean radiant temperature (Tmrt) with r = 0.75 ± 0.16. The differences in thermal stress levels over the city have been distinctively observed in the ATmax, PETmax, and PTmax maps, which are generated by the daily maximum values of the indices. Çatalca, where forests cover large areas compared to highly urbanized districts, has the lowest heat stress defined by all indices.

SELECTION OF CITATIONS
SEARCH DETAIL
...