Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 84(2): 025005, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23464244

ABSTRACT

This paper presents an energy-efficient readout circuit for resonant sensors that operates based on a transient measurement method. The resonant sensor is driven at a frequency close to its resonance frequency by an excitation source that can be intermittently disconnected, causing the sensor to oscillate at its resonance frequency with exponentially decaying amplitude. By counting the zero crossings of this ring-down response, the interface circuit can detect the resonance frequency. In contrast with oscillator-based readout, the presented readout circuit is readily able to detect quality factor (Q) of the resonator from the envelope of the ring-down response, and can be used even in the presence of large parasitic capacitors. A prototype of the readout circuit has been integrated in 0.35 µm CMOS technology, and consumes only 36 µA from a 3.3 V supply during a measurement time of 2 ms. The resonance frequency and quality factor of a micro-machined SiN resonator obtained using this prototype are in good agreement with results obtained using impedance analysis. Furthermore, a clear transient response is observed to ethanol flow using the presented readout, demonstrating the use of this technique in sensing applications.

2.
Lab Chip ; 10(22): 3013-25, 2010 Nov 21.
Article in English | MEDLINE | ID: mdl-20862440

ABSTRACT

A solid body undergoing oscillatory motion in a fluid generates an oscillating flow. Oscillating flows in Newtonian fluids were first treated by G.G. Stokes in 1851. Since then, this problem has attracted much attention, mostly due to its technological significance. Recent advances in micro- and nanotechnology require that this problem be revisited: miniaturized mechanical resonators with linear dimensions in microns and sub-microns-microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), respectively-give rise to oscillating flows when operated in fluids. Yet flow parameters for these devices, such as the characteristic flow time and length scales, may deviate greatly from those in Stokes' solution. As a result, new and interesting physics emerges with important consequences to device applications. In this review, we shall provide an introduction to this area of fluid dynamics, called high-frequency nanofluidics, with emphasis on both theory and experiments.


Subject(s)
Micro-Electrical-Mechanical Systems , Microfluidic Analytical Techniques , Microfluidics , Nanotechnology , Algorithms , Models, Theoretical
3.
Phys Rev Lett ; 101(26): 264501, 2008 Dec 31.
Article in English | MEDLINE | ID: mdl-19437646

ABSTRACT

We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and linear dimension bear no effect on the flow. Energy dissipation of mechanical resonators in a rarefied gas follows this universality closely in a broad linear dimension (10(-6) m < L < 10(-2) m) and frequency (10(5) Hz < omega/2pi < 10(8) Hz) range. Our results suggest a deep connection between flows of simple and complex fluids.

4.
Phys Rev Lett ; 98(25): 254505, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17678031

ABSTRACT

Here we apply nanomechanical resonators to the study of oscillatory fluid dynamics. A high-resonance-frequency nanomechanical resonator generates a rapidly oscillating flow in a surrounding gaseous environment; the nature of the flow is studied through the flow-resonator interaction. Over the broad frequency and pressure range explored, we observe signs of a transition from Newtonian to non-Newtonian flow at omega tau approximately 1, where tau is a properly defined fluid relaxation time. The obtained experimental data appear to be in close quantitative agreement with a theory that predicts a purely elastic fluid response as omega tau --> infinity.

SELECTION OF CITATIONS
SEARCH DETAIL
...