Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Immunology ; 11(10): e1421, 2022.
Article in English | MEDLINE | ID: mdl-36285327

ABSTRACT

Objectives: Despite advances in antibody treatments and vaccines, COVID-19 caused by SARS-CoV-2 infection remains a major health problem resulting in excessive morbidity and mortality and the emergence of new variants has reduced the effectiveness of current vaccines. Methods: Here, as a proof-of-concept, we engineered primary CD8 T cells to express SARS-CoV-2 Spike protein-specific CARs, using the extracellular region of ACE2 and demonstrated their highly specific and potent cytotoxicity towards Spike-expressing target cells. To improve on this concept as a potential therapeutic, we developed a bispecific T cell engager combining ACE2 with an anti-CD3 scFv (ACE2-Bite) to target infected cells and the virus. Results: As in CAR-T cell approach, ACE2-Bite endowed cytotoxic cells to selectively kill Spike-expressing targets. Furthermore, ACE2-Bite neutralized the pseudoviruses of SARS-CoV, SARS-CoV-2 wild-type, and variants including Delta and Omicron, as a decoy protein. Remarkably, ACE2-Bite molecule showed a higher binding and neutralization affinity to Delta and Omicron variants compared to SARS-CoV-2 wild-type Spike proteins. Conclusion: In conclusion, these results suggest the potential of this approach as a variant-proof, therapeutic strategy for future SARS-CoV-2 variants, employing both humoral and cellular arms of the adaptive immune response.

2.
Inflamm Bowel Dis ; 28(7): 1019-1026, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34528661

ABSTRACT

BACKGROUND: Characterization of neutralization antibodies to SARS-CoV-2 infection or vaccination in children and young adults with inflammatory bowel disease (IBD) receiving biologic therapies is crucial. METHODS: We performed a prospective longitudinal cohort study evaluating SARS-CoV-2 spike protein receptor binding domain (S-RBD) IgG positivity along with consistent clinical symptoms in patients with IBD receiving infliximab or vedolizumab. Serum was also obtained following immunization with approved vaccines. The IgG antibody to the spike protein binding domain of SARS-CoV-2 was assayed with a fluorescent bead-based immunoassay that takes advantage of the high dynamic range of fluorescent molecules using flow cytometry. A sensitive and high-throughput neutralization assay that incorporates SARS-CoV-2 spike protein onto a lentivirus and measures pseudoviral entry into ACE2-angiotensin converting enzyme 2 (ACE2) expressing human embryonic kidney 293 (HEK-293) cells was used. RESULTS: There were 436 patients enrolled (mean age, 17 years, range 2-26 years; 58% male; 71% Crohn's disease, 29% ulcerative colitis, IBD-unspecified). Forty-four (10%) of enrolled subjects had SARS-CoV-2 S-RBD IgG antibodies. Compared to non-IBD adults (ambulatory) and hospitalized pediatric patients with PCR documented SARS-CoV-2 infection, S-RBD IgG antibody levels were significantly lower in the IBD cohort and by 6 months post infection most patients lacked neutralizing antibody. Following vaccination (n = 33), patients had a 15-fold higher S-RBD antibody response in comparison with natural infection, and all developed neutralizing antibodies to both wild type and variant SARS-CoV-2. CONCLUSIONS: The lower and less durable SARS-CoV-2 S-RBD IgG response to natural infection in IBD patients receiving biologics puts them at risk of reinfection. The robust response to immunization is likely protective.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Inflammatory Bowel Diseases , Adolescent , Adult , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Female , HEK293 Cells , Humans , Immunoglobulin G , Inflammatory Bowel Diseases/drug therapy , Longitudinal Studies , Male , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Young Adult
3.
Sensors (Basel) ; 21(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068359

ABSTRACT

The integrated circuit (IC) manufacturing process involves many players, from chip/board design and fabrication to firmware design and installation. In today's global supply chain, any of these steps are prone to interference from rogue players, creating a security risk. Therefore, manufactured devices need to be verified to perform only their intended operations since it is not economically feasible to control the supply chain and use only trusted facilities. This paper presents a detection technique for malicious activity that can stem from hardware or firmware Trojans. The proposed technique relies on (i) repetitious side-channel sample collection of the active device, (ii) time-domain stitching, and (iii) frequency domain analysis. Since finding a trusted sample is generally impractical, the proposed technique is based on self-referencing to remove the effects of environmental or device-to-device variation in the frequency domain. We first observe that the power spectrum of the Trojan activity is confined to a low-frequency band. Then, we exploit this fact to achieve self-referencing using signal detection theory. The proposed technique's effectiveness is demonstrated through experiments on a wearable electronics prototype and system-on-chip (SoC) under a variety of practical scenarios. Experimental results show the proposed detection technique enables a high overall detection coverage for malicious activities of varying types with 0.8 s monitoring time overhead, which is negligible.


Subject(s)
Wearable Electronic Devices , Computers , Electronics
SELECTION OF CITATIONS
SEARCH DETAIL
...