Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 150(2): 1534, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34470268

ABSTRACT

Broadband shock-associated noise (BBSAN) is an important component of supersonic jet noise for jets at off-design conditions when the pressure at the nozzle exit is different from the ambient. Two high-area-ratio under-expanded supersonic jets at nozzle pressure ratios (NPRs) 3.4 and 4.2 are considered. The jets correspond to conditions of the experiment in the Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC) in the Supersonic Jet Facility of Monash University. Flow solutions are obtained by the large eddy simulation (LES) and Reynolds averaged Navier-Stokes (RANS) methods. The solutions are validated against the particle image velocimetry (PIV) data. For noise spectra predictions, the LES solution is combined with the time-domain Ffowcs Williams-Hawkings method. To probe the accuracy of the reduced-order method based on acoustic analogy, the RANS solutions are substituted in the Morris and Miller BBSAN method, where different options for modelling of the acoustic correlation scales are investigated. The noise spectra predictions are compared with the experimental data from the non-anechoic LTRAC facility and the NASA empirical sJet model. Apart from the low frequencies influenced by the jet mixing noise, the RANS-based acoustic predictions align with those from LES for most frequencies in the range of Strouhal numbers (St) 0.4 < St < 2 within 1-2 dB.

2.
Langmuir ; 36(20): 5633-5646, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32370511

ABSTRACT

Water confined by hydrophilic materials shows unique transport properties compared to bulk water, thereby offering new opportunities for the development of nanofluidic devices. Recent experimental and numerical studies showed that nanoconfined water undergoes liquid- to solid-phase-like transitions depending on the degree of confinement. In the case of water confined by graphene layers, the van der Waals forces are known to deform the graphene layers, whose bending leads to further nonuniform confinement effects. Despite the extensive studies of nanoconfined water under equilibrium conditions, the interplay between the confinement and rheological water properties, such as viscosity, slip length, and normal stress differences under shear flow conditions, is poorly understood. The current investigation uses a validated all-atom nonequilibrium molecular dynamics model to simultaneously analyze the continuum transport and atomistic structural properties of water in a slit between two moving graphene walls under Couette flow conditions. A range of different slit widths and velocity strain rates are considered. It is shown that under subnanometer confinement, water loses the rotational symmetry of a Newtonian fluid. Under such conditions, water transforms into ice, where the atomistic structure is completely insensitive to the applied shear force and behaves like a frozen slab sliding between the graphene walls. This leads to the shear viscosity increase, although it is not as dramatic as the normal force increase that contributes to the increased friction force reported in previous experimental studies. On the other end of the spectrum, for flows at large velocity strain rates in moderate to large slits between the graphene walls, water is in the liquid state and reveals shear thinning behavior. In this case, water exhibits a constant slip length on the wall, which is typical of liquids in the vicinity of hydrophobic surfaces.

3.
Philos Trans A Math Phys Eng Sci ; 377(2159): 20190083, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31607254

ABSTRACT

Large-eddy simulations (LES) are performed for a range of perfectly expanded co-axial jet cases corresponding to conditions of the computation of coaxial jet noise (CoJeN) experiment by QinetiQ. In all simulations, the high-resolution Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) is used for solving the Navier-Stokes equations on unstructured meshes. The Ffowcs Williams-Hawkings method based on the penetrable integral surfaces is applied for far-field noise predictions. To correctly model the turbulent flow downstream of the complex nozzle that includes a central body, a wall modelled LES approach is implemented together with a turbulent inflow condition based on synthetic turbulence. All models are run on graphics processing units to enable a considerable reduction of the flow solution time in comparison with the conventional LES. The flow and noise solutions are validated against the experimental data available with 1-2 dB accuracy being reported for noise spectra predictions on the fine grid. To analyse the structure of effective noise sources of the jets, the covariance of turbulent fluctuating Reynolds stresses is computed and their characteristic scales are analysed in the context of the generalized acoustic analogy jet noise models. Motivated by self-similarity of single-stream axi-symmetric jet flows, a suitable non-dimensionalization of the effective jet noise sources of the CoJeN jets is tested, and its implications for low-order jet noise models are discussed. This article is part of the theme issue 'Frontiers of aeroacoustics research: theory, computation and experiment'.

4.
R Soc Open Sci ; 6(1): 180745, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30800342

ABSTRACT

For a sperm-cell-like flagellated swimmer in an unbounded domain, several numerical models of different fidelity are considered based on the Stokes flow approximation. The models include a regularized Stokeslet method and a three-dimensional finite-element method, which serve as the benchmark solutions for several approximate models considered. The latter include the resistive force theory versions of Lighthill, and Gray and Hancock, as well as a simplified approximation based on computing the hydrodynamic forces exerted on the head and the flagellum separately. It is shown how none of the simplified models is robust enough with regards to predicting the effect of the swimmer head shape change on the swimmer dynamics. For a range of swimmer motions considered, the resulting solutions for the swimmer force and velocities are analysed and the applicability of the Stokes model for the swimmers in question is probed.

5.
J Chem Phys ; 149(8): 084108, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30193466

ABSTRACT

A triple-scale model of a molecular liquid, where atomistic, coarse-grained, and hydrodynamic descriptions of the same substance are consistently combined, is developed. Following the two-phase analogy method, the continuum and discrete particle representations of the same substance are coupled together in the framework of conservation laws for mass and momentum that are treated as effective phases of a nominally two-phase flow. The effective phase distribution, which governs the model resolution locally, is a user-defined function. In comparison with the previous models of this kind in the literature which used the classical Molecular Dynamics (MD) for the particulate phase, the current approach uses the Adaptive Resolution Scheme (AdResS) and stochastic integration to smoothen the particle transition from non-bonded atom dynamics to hydrodynamics. Accuracy and robustness of the new AdResS-Fluctuating Hydrodynamics (FH) model for water at equilibrium conditions is compared with the previous implementation of the two-phase analogy model based on the MD-FH method. To demonstrate that the AdResS-FH method can accurately support hydrodynamic fluctuations of mass and momentum, a test problem of high-frequency acoustic wave propagation through a small hybrid computational domain region is considered.

6.
J Chem Phys ; 149(24): 244101, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30599699

ABSTRACT

A new hybrid molecular dynamics-hydrodynamics method based on the analogy with two-phase flows is implemented that takes into account the feedback of molecular dynamics on hydrodynamics consistently. The consistency is achieved by deriving a discrete system of fluctuating hydrodynamic equations whose solution converges to the locally averaged molecular dynamics field exactly in terms of the locally averaged fields. The new equations can be viewed as a generalisation of the classical continuum Landau-Lifshitz fluctuating hydrodynamics model in statistical mechanics to include a smooth transition from large-scale continuum hydrodynamics that obeys a Gaussian statistics to all-atom molecular dynamics. Similar to the classical Landau-Lifshitz fluctuating hydrodynamics model, the suggested generalised Landau-Lifshitz fluctuating hydrodynamics equations are too complex for analytical solution; hence, a computational scheme for solving these equations is suggested. The scheme is implemented in a popular open-source molecular dynamics code GROMACS (GROningen MAchine for Chemical Simulations), and numerical examples are provided for liquid argon simulations under equilibrium conditions and under macroscopic flow effects.

7.
Philos Trans A Math Phys Eng Sci ; 368(1924): 3593-608, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20603370

ABSTRACT

Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

SELECTION OF CITATIONS
SEARCH DETAIL
...