Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790280

ABSTRACT

This study aims to integrate a novel bio-purification process employing an engineered E. coli strain in the downstream processing of lactic acid (LA) fermentation broths from low-cost renewable biological feedstocks. Fermentation broth of candy waste and digestate mixture was used as a real biological feedstock. An engineered E. coli strain that selectively catabolize impurities without catabolizing LA was initially adapted on the biological feedstock, followed by shake flask experiments to prove the bio-purification concept. Scale-up and validation in a bench-scale bioreactor followed, before developing a semi-continuous membrane bioreactor (MBR) bio-purification process. The MBR bio-purification was assessed with biological feedstocks which simulated ultrafiltration or nanofiltration permeates. Incomplete removal of impurities and increased fouling was observed in the case of the ultrafiltration permeate. Contrarily, the nanofiltration permeate was successfully treated with MBR bio-purification, since low membrane fouling, 100% maltose and acetic acid removal, and no LA catabolism was achieved. MBR bio-purification as a post-treatment step in the downstream processing of LA was demonstrated as a promising technology for increasing the purity of LA solutions.

2.
Article in English | MEDLINE | ID: mdl-38696097

ABSTRACT

This study describes the enzymatic production of second-generation biodiesel using low-quality acid oil as a substrate. Biolipasa-R, a commercially available and low-cost lipase, was employed for enzymatic transesterification. Response surface methodology was applied to optimize the enzymatic transesterification process. The optimal conditions for biodiesel production, which comprised 42% lipase concentration (per weight of oil), 32% water content (per weight of oil), a methanol to oil molar ratio of 3:1, pH 7.0 and reaction temperature 30°C, resulted in the highest fatty acid methyl ester (FAME) content (71.3%). Subsequently, the synergistic effect of two lipases with different regioselectivities under the optimum transesterification conditions was studied, aiming at the enhancement of process efficiency. The transesterification efficiency of immobilized Biolipasa-R was determined and compared to that of Biolipasa-R in its free form. The results revealed a good performance on FAME content (66.5%), while the recycling of immobilized lipase resulted in a decrease in transesterification efficiency after three consecutive uses.

3.
Biotechnol Biofuels Bioprod ; 17(1): 48, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555439

ABSTRACT

BACKGROUND: A potential alternative to lactic acid production through sugar fermentation is its recovery from grass silage leachate. The separation and purification of lactic acid from fermentation broths remain a key issue, as it amounts to up to 80% of its industrial production cost. In this study, a genetically engineered E. coli strain (A1:ldhA), that cannot catabolize lactic acid, has been used to selectively remove impurities from a synthetic medium comprising typical components (i.e., glucose and acetic acid) of green grass silage leachate. A systematic approach has been followed to provide a proof-of-concept for a bio-purification process of lactic acid solutions in a membrane bioreactor operating in semi-continuous mode. RESULTS: The synthetic medium composition was initially optimized in shake-flasks experiments, followed by scale-up in bench-scale bioreactor. Complete (i.e., 100%) and 60.4% removal for glucose and acetic acid, respectively, has been achieved in batch bioreactor experiments with a synthetic medium comprising 0.5 g/L glucose and 0.5 g/L acetic acid as carbon sources, and 10 g/L lactic acid; no lactic acid catabolism was observed in all batch fermentation tests. Afterwards, a hybrid biotechnological process combining semi-continuous bioreactor fermentation and ultrafiltration membrane separation (membrane bioreactor) was applied to in-situ separate purified medium from the active cells. The process was assessed under different semi-continuous operating conditions, resulting in a bacteria-free effluent and 100% glucose and acetic acid depletion, with no lactic acid catabolism, thus increasing the purity of the synthetic lactic acid solution. CONCLUSIONS: The study clearly demonstrated that a bio-purification process for lactic acid employing the engineered E. coli strain cultivated in a membrane bioreactor is a technically feasible concept, paving the way for further technological advancement.

4.
J Artif Organs ; 27(2): 91-99, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38238597

ABSTRACT

Excessive albumin losses during HC (haemocatharsis) are considered a potential cause of hypoalbuminemia-a key risk factor for mortality. This review on total albumin losses considers albumin "leaking" into the dialysate and losses due to protein/membrane interactions (i.e. adsorption, "secondary membrane formation" and denaturation). The former are fairly easy to determine, usually varying at the level of ~ 2 g to ~ 7 g albumin loss per session. Such values, commonly accepted as representative of the total albumin losses, are often quoted as limits/standards of permissible albumin loss per session. On albumin mass lost due to adsorption/deposition, which is the result of complicated interactions and rather difficult to determine, scant in vivo data exist and there is great uncertainty and confusion regarding their magnitude; this is possibly responsible for neglecting their contribution to the total losses at present. Yet, many relevant in vitro studies suggest that losses of albumin due to protein/membrane interactions are likely comparable to (or even greater than) those due to leaking, particularly in the currently favoured high-convection HDF (haemodiafiltration) treatment. Therefore, it is emphasised that top research priority should be given to resolve these issues, primarily by developing appropriate/facile in vivo test-methods and related analytical techniques.


Subject(s)
Hemodiafiltration , Hypoalbuminemia , Serum Albumin , Humans , Dialysis Solutions/chemistry , Hemodiafiltration/methods , Renal Dialysis , Serum Albumin/analysis
5.
Microb Cell Fact ; 22(1): 62, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37004109

ABSTRACT

BACKGROUND: Yarrowia lipolytica is a well-studied oleaginous yeast known for its ability to accumulate and store intracellular lipids, while growing on diverse, non-conventional substrates. Amongst them, crude glycerol, a low-cost by-product of the biodiesel industry, appears to be an interesting option for scaling up a sustainable single-cell oil production process. Adaptive laboratory evolution (ALE) is a powerful tool to force metabolic adaptations endowing tolerance to stressful environmental conditions, generating superior phenotypes with industrial relevance. RESULTS: Y. lipolytica MUCL 28849 underwent ALE in a synthetic medium with increasing concentration of pure or crude glycerol as a stressing factor (9-20% v/v) for 520 generations. In one case of pure glycerol, chemical mutagenesis with ethyl methanesulfonate (EMS) was applied prior to ALE. Growth profile, biomass production and lipid content of 660 evolved strains (EVS), revealed 5 superior isolates; exhibiting from 1.9 to 3.6-fold increase of dry biomass and from 1.1 to 1.6-fold increase of lipid concentration compared to the parental strain, when grown in 15% v/v crude glycerol. NGS for differential gene expression analysis, showed induced expression in all EVS affecting nucleosomal structure and regulation of transcription. As strains differentiated, further changes accumulated in membrane transport and protein transport processes. Genes involved in glycerol catabolism and triacylglycerol biosynthesis were overexpressed in two EVS. Mismatches and gaps in the expressed sequences identified altered splicing and mutations in the EVS, with most of them, affecting different components of septin ring formation in the budding process. The selected YLE155 EVS, used for scale-up cultivation in a 3L benchtop bioreactor with 20% v/v crude glycerol, achieved extended exponential phase, twofold increase of dry biomass and lipid yields at 48 h, while citric acid secretion and glycerol consumption rates were 40% and 50% lower, respectively, compared to the parental strain, after 24 h of cultivation. CONCLUSION: ALE and EMS-ALE under increasing concentrations of pure or crude glycerol generated novel Y. lipolytica strains with enhanced biomass and lipid content. Differential gene expression analysis and scale-up of YLE155, illustrated the potential of the evolved strains to serve as suitable "chassis" for rational engineering approaches towards both increased lipid accumulation, and production of high-added value compounds, through efficient utilization of crude glycerol.


Subject(s)
Glycerol , Yarrowia , Glycerol/metabolism , Yarrowia/metabolism , Bioreactors , Mutation , Lipids
6.
Membranes (Basel) ; 13(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36984684

ABSTRACT

Complete valorization of various wastes and effluents, with significant organic content, remains a great challenge in the pursuit of a circular economy. The approach based on anaerobic fermentation, leading to valuable biogas production, has been broadly accepted and employed as an attractive processing scheme. However, despite notable research efforts, complete valorization of the digestates (involving recovery of nutrients/by-products and full recycling/reuse of treated water) requires additional work for sustainable process development. This study aims to make a contribution in this direction by demonstrating a systematic methodology for valorizing the liquid digestate. The proposed membrane-based processing scheme involves UF-membrane pretreatment of the liquid digestate (for sludge separation) and subsequent NF/RO membrane treatment for reuse/recycling of the permeate; the concentrate, enriched in "nutrients" (phosphate and ammonium compounds), can be utilized for soil fertilization, with further conditioning/processing. By performing targeted laboratory experiments and advanced simulations, the membrane-based process was developed to a relatively high technology-readiness level, including a pilot unit design/construction and preliminary testing with satisfactory results. Through pilot testing in industrial environment, further process development and optimization will be pursued, towards practical applications. The demonstrated methodology is also considered appropriate for systematic development of membrane-based processes to valorize/treat a variety of similar effluents.

7.
Membranes (Basel) ; 12(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893443

ABSTRACT

Membrane processes can be integrated with fermentation for the selective separation of the products from the fermentation broth. Sterilization with saturated steam under pressure is the most widely used method; however, data concerning heat sterilization applicability to polymeric ultrafiltration (UF) membranes are scarcely available. In this study, the effect of the sterilization process on the filtration performance of a commercial polyvinylidene difluoride (PVDF) hollow fiber UF membrane was evaluated. Membrane modules were constructed and sterilized several times in an autoclave. Pure water flux tests were performed, to assess the effect of heat sterilization on the membrane's pure water permeance. Dextran rejection tests were performed for the characterization of membrane typical pore size and its fouling propensity. Filtration performance was also assessed by conducting filtration tests with real fermentation broth. After repeated sterilization cycles, pure water permeance remained quite constant, varying between approx. 830 and 990 L·m-2·h-1·bar-1, while the molecular weight cut-off (MWCO) was estimated to be in the range of 31.5-98.0 kDa. Regarding fouling behavior, the trans-membrane pressure increase rate was stable and quite low (between 0.5 and 7.0 mbar/min). The results suggest that commercial PVDF UF membranes are a viable alternative to high-cost ceramic UF membranes for fermentation processes that require heat sterilization.

8.
Membranes (Basel) ; 12(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35054588

ABSTRACT

Reliable mathematical models are important tools for design/optimization of haemo-filtration modules. For a specific module, such a model requires knowledge of fluid- mechanical and mass transfer parameters, which have to be determined through experimental data representative of the usual countercurrent operation. Attempting to determine all these parameters, through measured/external flow-rates and pressures, combined with the inherent inaccuracies of pressure measurements, creates an ill-posed problem (as recently shown). The novel systematic methodology followed herein, demonstrated for Newtonian fluids, involves specially designed experiments, allowing first the independent reliable determination of fluid-mechanical parameters. In this paper, the method is further developed, to determine the complete mass transfer module-characteristics; i.e., the mass transfer problem is modelled/solved, employing the already fully-described flow field. Furthermore, the model is validated using new/detailed experimental data on concentration profiles of a typical solute (urea) in counter-current flow. A single intrinsic-parameter value (i.e., the unknown effective solute-diffusivity in the membrane) satisfactorily fits all data. Significant insights are also obtained regarding the relative contributions of convective and diffusive mass-transfer. This study completes the method for reliable module simulation in Newtonian-liquid flow and provides the basis for extension to plasma/blood haemofiltration, where account should be also taken of oncotic-pressure and membrane-fouling effects.

9.
Artif Organs ; 45(11): 1348-1359, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34181759

ABSTRACT

Facile methods for accurate fluid-mechanical characterization of haemofilters (HF) are indispensable for haemofiltration process improvements, equipment design/optimization, and reliable module specifications. Currently employed methods, implemented through specific experimental in vitro protocols, are assessed herein in detail, considering the conditions prevailing during haemofiltration. Minimum number of key parameters required to fully describe the common countercurrent flow field, in the HF active section, include membrane permeance K and friction coefficients in lumen and shell side (ff and fs ). It is shown that the countercurrent flow mode itself is incapable of yielding these parameters, based on externally measured flow rates and pressures. Similarly, the relevant ISO protocol is deficient as it can only provide rough underpredictions of permeance K. The causes of such inherent deficiencies of current standards and practices are analyzed. In contrast, a recently developed methodology, accounting for the (heretofore ignored) pressure drop in module headers and combining a mechanistic theoretical model with experimental data from 2 special haemofilter operating modes, yields an accurate determination of the key parameters (K, ff , fs ). Additionally, it permits a full description of flow field for Newtonian liquids, for both constant and axially varying viscosity in fiber-lumen due to the transmembrane flux. Development of new reliable standards is suggested, facilitated by the insights gained in this work.


Subject(s)
Hemofiltration/instrumentation , Hydrodynamics , Equipment Design , Hemofiltration/standards , Membranes, Artificial , Models, Theoretical
10.
Water Res ; 91: 183-94, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26795303

ABSTRACT

To assess the performance of a novel 'filter'-type electro-Fenton (EF) device, results are reported from pilot-scale studies of continuous water treatment, to degrade diclofenac (DCF), a typical organic micro-pollutant, with no addition of oxidants. The novel 'filter' consisted of three pairs of anode/cathode electrodes made of carbon felt, with cathodes impregnated with iron nanoparticles (γ-Fe2O3/F3O4 oxides). The best 'filter' performance was obtained at applied potential of 2 V and low water superficial velocities (∼0.09 cm/s), i.e., the mineralization current efficiency (MCE) was >20%, during continuous steady state treatment of tap water with low DCF concentrations (16 µg/L). The EF 'filter' exhibited satisfactory stability regarding both electrode integrity (no iron leaching) and removal efficiency, even after multiple filtration/oxidation treatment cycles, achieving (under steady conditions) DCF and TOC removal 85% and 36%, respectively. This performance is considered satisfactory because the EF process took place under rather unfavorable conditions, such as neutral pH, low dissolved O2 concentration, low electrical conductivity, and presence of natural organic matter and inorganic ions in tap water. Ongoing R&D is aimed at 'filter' development and optimization for practical applications.


Subject(s)
Diclofenac/chemistry , Drinking Water/analysis , Filtration/methods , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Carbon/chemistry , Electrochemistry , Electrodes , Filtration/instrumentation , Iron/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction , Pilot Projects , Water Purification/instrumentation
11.
Crit Rev Food Sci Nutr ; 56(4): 686-709, 2016.
Article in English | MEDLINE | ID: mdl-25671774

ABSTRACT

Lycopene is an abundant natural carotenoid pigment with several biological functions (well-known for its antioxidant properties) which is under intensive investigation in recent years. Lycopene chemistry, its natural distribution, bioavailability, biological significance, and toxicological effects are briefly outlined in the first part of this review. The second, major part, deals with various modern downstream processing techniques, which are assessed in order to identify promising approaches for the recovery of lycopene and of similar lipophilic compounds. Natural lycopene is synthesized in plants and by microorganisms, with main representatives of these two categories (for industrial production) tomato and its by-products and the fungus Blakeslea trispora, respectively. Currently, there is a great deal of effort to develop efficient downstream processing for large scale production of natural-origin lycopene, with trends strongly indicating the necessity for "green" and mild extraction conditions. In this review, emphasis is placed on final product safety and ecofriendly processing, which are expected to totally dominate in the field of natural-origin lycopene extraction and purification.


Subject(s)
Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Carotenoids/chemistry , Carotenoids/isolation & purification , Animals , Anticarcinogenic Agents/metabolism , Anticarcinogenic Agents/toxicity , Antioxidants/metabolism , Antioxidants/toxicity , Bacteria/chemistry , Biological Availability , Carotenoids/metabolism , Carotenoids/toxicity , Citrullus/chemistry , Enzymes/metabolism , Fruit/chemistry , Fungi/chemistry , Half-Life , Humans , Intestinal Absorption , Lycopene , Solanum lycopersicum/chemistry , Microwaves , Mucorales/chemistry , Pressure , Solvents/chemistry , Solvents/classification , Surface-Active Agents/metabolism , Ultrasonic Waves , Vegetables/chemistry
12.
Acta Biochim Pol ; 59(1): 71-4, 2012.
Article in English | MEDLINE | ID: mdl-22428128

ABSTRACT

The tomato processing industry generates large quantities of tomato peel residues, usually creating environmental problems. These residues are a significant source of lycopene, thus providing an attractive alternative for profitable handling of these otherwise problematic by-products. The enzymatic pretreatment of these residues for lycopene recovery has already been employed, although the use of surfactants for enhancing the recovery has not been examined so far. The enzymatic pretreatment of tomato peels, using two commercially available pectinolytic enzyme preparations, was evaluated suggesting that there is an optimum pretreatment time of about 1 h, enzyme amount 250 Units/mL and no significant pH influence. Lycopene surfactant - assisted extraction was further investigated, showing that, among eight surfactants used, the most suitable was "Span 20", with an optimum ratio of 6-7 surfactant molecules per lycopene molecule. Sequential enzymatic pretreatment and surfactant-assisted extraction (30 min for each step) was evaluated leading to an improved lycopene extraction yield, with a somewhat smaller surfactant molar ratio (i.e. 4-5). In the latter case, the yield of lycopene recovery was almost four times greater compared to just 1 hr enzymatic pretreatment, and was approximately ten times greater compared to the recovery from untreated peels. Furthermore, such lipophilic compound recovery, avoiding the use of organic solvents, is environmentally attractive and ensures direct lycopene use in the food and cosmetics industries.


Subject(s)
Carotenoids/chemistry , Carotenoids/metabolism , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Lycopene
SELECTION OF CITATIONS
SEARCH DETAIL
...