Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Ther ; 18(1): 19-26, 2022.
Article in English | MEDLINE | ID: mdl-35381757

ABSTRACT

Curcumin, the key bioactive phytochemical present in turmeric (Curcuma longa L.), is the most studied natural compound in cancer. Preclinical studies (in vitro and in vitro) and clinical trials have demonstrated curcumin's effectiveness as an anti-inflammatory agent. The existing evidence supports that curcumin inhibits the proliferation of many types of cancer cells and can play an important role in cancer therapy. This study analyses the existing evidence in the literature on finalized clinical trials (2010-2020) related to the effect of curcumin and turmeric-derived products that focused on different types of cancers, such as chronic myeloid leukemia, multiple myeloma, prostate, colorectal and pancreatic cancer as well as cancer therapy-related complications, including oral mucositis and radiation dermatitis. Original English language articles and clinical trials published between 2010 and 2020 were searched using mainstream scholarly databases, such as PubMed, ScienceDirect, Google Scholar, and ClinicalTrials.gov. The keywords, such as "curcumin," "turmeric," "cancer," "anti-inflammatory," and "clinical trials," were used in various combinations. A total of 21 clinical trials were selected, reviewed, and included in this study. Sixteen out of 21 clinical trials were associated with the effectiveness of curcumin or turmeric on various types of cancer, and the other five clinical trials were related to the evaluation of the efficacy of curcumin or turmeric in relieving the side effects of cancer chemotherapy and radiotherapy. The emerging data from the clinical trials confirm that curcumin has the potential for cancer prevention and intervention. However, it is not yet clear whether long-term curcumin supplementation has similar benefits.


Subject(s)
Curcumin , Neoplasms , Stomatitis , Anti-Inflammatory Agents/pharmacology , Curcuma/chemistry , Curcumin/pharmacology , Curcumin/therapeutic use , Humans , Male , Neoplasms/drug therapy , Spices , Stomatitis/drug therapy
2.
Curr Pharm Biotechnol ; 23(5): 740-748, 2022.
Article in English | MEDLINE | ID: mdl-34445948

ABSTRACT

BACKGROUND: Endometrial cancer is one of the most common types of cancer. For this reason, various studies have been carried out on its treatment and the effects of natural products on this disease. OBJECTIVES: This study aimed to examine the growth inhibitory effects of Eryngium kotschyi Boiss. ethyl acetate [EKE] and butanol [EKB] obtained from the main methanol [EKM] extract from the aerial parts on human endometrium carcinoma [RL95-2] cells and their synergistic effect with cisplatin or doxorubicin. METHODS: RL95-2 cells were treated with E. kotschyi extracts either alone or in combination with cisplatin or doxorubicin. The effects on cell growth were determined using the MTT assay and real-time cell analysis xCELLigence. RESULTS: The extracts demonstrated growth inhibitory activity, with a certain degree of selectivity against the RL95-2 cell line. Synergistic effects of EKE/cisplatin or doxorubicin at different concentration levels were demonstrated in RL95-2 cells. In some instances, the EKE/doxorubicin combinations resulted in antagonistic effects. The reduction level of cell viability was different and specific to each combination for the RL95-2 cell line. CONCLUSION: The growth inhibitory activity of cisplatin or doxorubicin, as a single agent, may be modified by combinations of the extracts and be synergistically enhanced in some cases. A significant synergistic effect of EKE on the RL95-2 cell line with cisplatin and doxorubicin was observed. This cytotoxic effect can be investigated in terms of molecular mechanisms. This study is the first of its kind in the literature. The mechanisms involved in this interaction between chemotherapeutic drugs and plant extracts remain unclear and should be further evaluated.


Subject(s)
Endometrial Neoplasms , Eryngium , Cisplatin/pharmacology , Cytotoxins , Doxorubicin/pharmacology , Endometrial Neoplasms/drug therapy , Female , Humans , Plant Extracts/pharmacology
3.
Nutrients ; 10(6)2018 May 25.
Article in English | MEDLINE | ID: mdl-29799481

ABSTRACT

The aim of this study is to investigate the potential inhibitory effect of α-chaconine and α-solanine on RL95-2 estrogen receptor (ER) positive human endometrial cancer cell line and to identify the effect of these glycoalkaloids on the Akt signaling and ERα. The cell proliferation profiles and the cytotoxicity studies were performed by Real-Time Cell Analyzer (xCELLigence) and compared with Sulphorhodamine B (SRB) assay. The effects of α-chaconine (2.5, 5, 10 µM), α-solanine (20, 30, 50 µM), API-1 (25 µM) and MPP (20 µM) effects on Akt (Ser473) and ERα (Ser167) expressions evaluated by Western blot and qPCR method. Their IC50 values were as α-chaconine (4.72 µM) < MPP (20.01 µM) < α-solanine (26.27 µM) < API-1 (56.67 µM). 10 µM α-chaconine and 20, 30 and 50 µM α-solanine were effective in decreasing p-Akt(Ser473)/Akt ratio compared to positive control API-1. When the p-ERα/ERα ratios were evaluated, it was observed that α-chaconine (2.5, 5, 10 µM) and α-solanine (50 µM) were as effective as the specific ERα inhibitor MPP in reducing the ratio of p-ERα/ERα compared to the control group. In conclusion, it has been shown that the proliferation of α-chaconine and α-solanine in human endometrial carcinoma cells reduces the expression and activity of the Akt and ERα signaling pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Endometrial Neoplasms/drug therapy , Estrogen Receptor alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Solanine/analogs & derivatives , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Down-Regulation , Endometrial Neoplasms/enzymology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Estrogen Receptor alpha/genetics , Female , Humans , Inhibitory Concentration 50 , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Solanine/pharmacology , Time Factors
4.
Turk J Pharm Sci ; 15(1): 1-6, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32454633

ABSTRACT

OBJECTIVES: Vanadium compounds have various pharmacologic effects and all available evidence reveals that the effects of vanadium compounds depend on many factors, mainly on the type of cells and dose. The proapoptotic or antiapoptotic effect of vanadium compounds depends strongly on the cell type. MATERIALS AND METHODS: In this study, the effects of vanadium pentoxide (V2O5) were investigated using several tumor cell lines: a colorectal cancer cell line (Colo-205), a human breast adenocarcinoma cell line (MCF-7), and a normal human fibroblast cell line. Five different concentrations of V2O5 between 25-200 µM were applied on the cells and xCELLigence real-time cell analysis was conducted to evaluate the impedance alterations. This study is the first to show V2O5's effects on Colo-205 and MCF-7 and human fibroblast cell lines in a real-time manner. RESULTS: In the Colo-205 cell line, cell index (CI) alterations decreased slightly at 25 µM and 50 µM, and increased at 100 µM, 150 µM and 200 µM concentrations. In the MCF-7 cell line, CI alterations increased at all concentrations compared with the untreated control. However, in the healthy fibroblast cell line, the CI alterations decreased at all concentrations compared with the untreated control, which limits the use of V2O5 for its cytotoxic effect in vivo. CONCLUSION: The combination of conventional anticancer drugs can be used to increase the effectiveness and reduce the adverse effects of these drugs considering stages of cancer and cancer type. Our results suggest that V2O5 has disparate effects on several cancer cells at different concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...