Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 49(6): 4719-4726, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35474054

ABSTRACT

BACKGROUND: Accumulation of unfolded or misfolded proteins in the cellular environment result in ER stress and activates the unfolded protein response (UPR). The UPR alleviates ER stress and restores homeostasis, but it triggers cell death under prolonged stress. Here, we aimed to investigate the involvement of Sec71, an Arf-GEF involved in vesicular transport, in the tunicamycin-induced ER stress response. Since deubiquitinases and ER stress are known to be closely linked, we investigated this response by evaluating the potential role of Ubp2, a deubiquitinase, in the ER stress response in fission yeast. METHODS AND RESULTS: Tunicamycin-induced ER stress responses were assessed by analyzing cell viability, apoptosis, intracellular oxidation levels, and proteasomal activities in sec71 and ubp2-deficient cells. The cell viability of Δsec71 and Δubp2 decreased after exposure to 0.5 µg/mL tunicamycin. Deleting either ubp2 or sec71 genes significantly decreased proteasomal activity and sensitized cells to ER stress, resulting in increased apoptosis compared with wild-type cells after tunicamycin treatment. DCFDA (2,7-dichlorodihydrofluorescein diacetate) reduction increased in correlation with apoptosis observed in the mutant cells, indicating higher levels of reactive oxygen species. CONCLUSIONS: The results highlight the involvement of S. pombe Ubp2 in the known role of the ubiquitin-proteasome system in the ER stress response. We hypothesise that Sec71 is associated with ER homeostasis, and our findings on Sec71 provide new insight into the regulation of cell death mechanisms arising from the ER stress.


Subject(s)
Schizosaccharomyces , Apoptosis , Cell Survival , Endoplasmic Reticulum Stress , Tunicamycin/pharmacology , Unfolded Protein Response
2.
DNA Cell Biol ; 38(12): 1427-1436, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31657618

ABSTRACT

Complex human diseases such as metabolic disorders, cancer, neurodegenerative diseases, and mitochondrial dysfunctions arise from the biochemical or genetic defects in various cellular processes. Therefore, it is important to understand which metabolic processes are affected by which cellular impairment. Because genome-wide screening of mutant collections (haploid/diploid deletion library) provides important clues for the understanding of conserved biological processes and for finding potential target genes, we screened the haploid mutant collection of Schizosaccharomyces pombe with wortmannin that inhibits phosphatidylinositol-3-kinase signaling. Using genome-wide screening, we determined that 52 mutants were resistant to this chemical. When 52 genes that are deleted in these mutants were grouped in 41 different biological processes, we found that 37 of them have human orthologues and 4 genes were associated with human metabolic disorders. In addition, when we examined the pathways in which these 52 genes function, we determined that 9 genes were related to phosphorylation process. These results might provide new insights for better understanding of certain human diseases.


Subject(s)
Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Genome-Wide Association Study , Mutation , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Wortmannin/pharmacology , Genome, Fungal , Humans , Phosphorylation , Schizosaccharomyces/drug effects , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...