Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295441

ABSTRACT

Catalytic synthesis of carbon nanotubes (CNT) produces numerous various byproducts such as soot, graphite platelets, catalyst nanoparticles, etc. Identification of the byproduct formation mechanisms would help develop routes to more selective synthesis of better carbon-based materials. This work reports on the identification of the formation zone and conditions for rather unusual closed multishell carbon nanocapsules in a reactor for float-catalysis synthesis of longer CNT. Structural investigation of the formed nanocapsule material along with computational fluid dynamics (CFD) simulations of the reactor suggested a nanocapsule formation mechanism, in which CNT embryos are suppressed in growth by the in-reactor turbulence. By means of TEM and FFT investigation, it is found that differently oriented single crystals of γ-Fe2O3, which do not have clear connections with each other, determine a spherical surface. The carbon atoms that seep through these joints do not form crystalline graphite layers. The resulting additional product in the form of graphene-coated (γ-Fe/Fe3C)/γ-Fe2O3 nanoparticles can be a lightweight and effective microwave absorber.

2.
Nanomaterials (Basel) ; 11(5)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064324

ABSTRACT

Epoxy nanocomposites with float catalysis-produced CNT felt as a filler were prepared. Parameters such as the curing process, glass transition of epoxynanocomposites, structure and morphology of CNT felt, initial epoxy composition, and epoxy nanocomposites were investigated. The influence of CNT felt on curing process in epoxy nanocomposites with different amounts of curing agent was determined. An exothermic reaction between the curing agent and the surface of CNTs was established. It was found that the structure of epoxy nanocomposites has a high degree of heterogeneity: the presence of fiber-like structures and individualized CNTs is observed together with the regions that are typical for CNTs that are fabricated via a catalytic chemical vapor deposition (CVD). Based on the studies performed, it is possible to predict the production of epoxy nanocomposites with outstanding mechanical and thermophysical properties. In particular, the uncured compositions already obtained in this work can be used for the manufacture of electrically conductive glass and carbon fiber reinforced plastics and functional coatings.

3.
Nanomaterials (Basel) ; 10(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213020

ABSTRACT

The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)2. The formation of very long (up to several µm) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)2 resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 × 10-3 to 1.1 × 10-5 Ω∙m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...