Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 89: 107408, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33137690

ABSTRACT

Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic is ongoing, with no proven safe and effective vaccine to date. Further, effective therapeutic agents for COVID-19 are limited, and as a result, the identification of potential small molecule antiviral drugs is of particular importance. A critical antiviral target is the SARS-CoV-2 main protease (Mpro), and our aim was to identify lead compounds with potential inhibitory effects. We performed an initial molecular docking screen of 300 small molecules, which included phenolic compounds and fatty acids from our OliveNet™ library (224), and an additional group of curated pharmacological and dietary compounds. The prototypical α-ketoamide 13b inhibitor was used as a control to guide selection of the top 30 compounds with respect to binding affinity to the Mpro active site. Further studies and analyses including blind docking were performed to identify hypericin, cyanidin-3-O-glucoside and SRT2104 as potential leads. Molecular dynamics simulations demonstrated that hypericin (ΔG = -18.6 and -19.3 kcal/mol), cyanidin-3-O-glucoside (ΔG = -50.8 and -42.1 kcal/mol), and SRT2104 (ΔG = -8.7 and -20.6 kcal/mol), formed stable interactions with the Mpro active site. An enzyme-linked immunosorbent assay indicated that, albeit, not as potent as the covalent positive control (GC376), our leads inhibited the Mpro with activity in the micromolar range, and an order of effectiveness of hypericin and cyanidin-3-O-glucoside > SRT2104 > SRT1720. Overall, our findings, and those highlighted by others indicate that hypericin and cyanidin-3-O-glucoside are suitable candidates for progress to in vitro and in vivo antiviral studies.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Antiviral Agents/chemistry , Coronavirus Protease Inhibitors/chemistry , Fatty Acids/chemistry , Fatty Acids/pharmacology , Humans , Ligands , Microbial Sensitivity Tests , Models, Molecular , Phenols/chemistry , Phenols/pharmacology , SARS-CoV-2/metabolism , Small Molecule Libraries/chemistry
2.
Comput Biol Chem ; 89: 107372, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32911432

ABSTRACT

The SARS-CoV-2 virus is causing COVID-19 resulting in an ongoing pandemic with serious health, social, and economic implications. Much research is focused in repurposing or identifying new small molecules which may interact with viral or host-cell molecular targets. An important SARS-CoV-2 target is the main protease (Mpro), and the peptidomimetic α-ketoamides represent prototypical experimental inhibitors. The protease is characterised by the dimerization of two monomers each which contains the catalytic dyad defined by Cys145 and His41 residues (active site). Dimerization yields the functional homodimer. Here, our aim was to investigate small molecules, including lopinavir and ritonavir, α-ketoamide 13b, and ebselen, for their ability to interact with the Mpro. The sirtuin 1 agonist SRT1720 was also used in our analyses. Blind docking to each monomer individually indicated preferential binding of the ligands in the active site. Site-mapping of the dimeric protease indicated a highly reactive pocket in the dimerization region at the domain III apex. Blind docking consistently indicated a strong preference of ligand binding in domain III, away from the active site. Molecular dynamics simulations indicated that ligands docked both to the active site and in the dimerization region at the apex, formed relatively stable interactions. Overall, our findings do not obviate the superior potency with respect to inhibition of protease activity of covalently-linked inhibitors such as α-ketoamide 13b in the Mpro active site. Nevertheless, along with those from others, our findings highlight the importance of further characterisation of the Mpro active site and any potential allosteric sites.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/pharmacology , Protein Multimerization/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Azoles/chemical synthesis , Azoles/chemistry , Azoles/pharmacology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemical synthesis , Coronavirus Protease Inhibitors/chemistry , Humans , Isoindoles , Ligands , Lopinavir/chemical synthesis , Lopinavir/chemistry , Lopinavir/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Ritonavir/chemical synthesis , Ritonavir/chemistry , Ritonavir/pharmacology , SARS-CoV-2/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
3.
Comput Biol Chem ; 87: 107292, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32485652

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes an illness known as COVID-19, which has been declared a global pandemic with over 2 million confirmed cases and 137,000 deaths in 185 countries and regions at the time of writing (16 April 2020), over a quarter of these cases being in the United States. In the absence of a vaccine, or an approved effective therapeutic, there is an intense interest in repositioning available drugs or designing small molecule antivirals. In this context, in silico modelling has proven to be an invaluable tool. An important target is the SARS-CoV-2 main protease (Mpro), involved in processing translated viral proteins. Peptidomimetic α-ketoamides represent prototypical inhibitors of Mpro. A recent attempt at designing a compound with enhanced pharmacokinetic properties has resulted in the synthesis and evaluation of the α-ketoamide 13b analogue. Here, we performed molecular docking and molecular dynamics simulations to further characterize the interaction of α-ketoamide 13b with the active site of the SARS-CoV-2 Mpro. We included the widely used antibiotic, amoxicillin, for comparison. Our findings indicate that α-ketoamide 13b binds more tightly (predicted GlideScore = -8.7 and -9.2 kcal/mol for protomers A and B, respectively), to the protease active site compared to amoxicillin (-5.0 and -4.8 kcal/mol). Further, molecular dynamics simulations highlight the stability of the interaction of the α-ketoamide 13b ligand with the SARS-CoV-2 Mpro (ΔG = -25.2 and -22.3 kcal/mol for protomers A and B). In contrast, amoxicillin interacts unfavourably with the protease (ΔG = +32.8 kcal/mol for protomer A), with unbinding events observed in several independent simulations. Overall, our findings are consistent with those previously observed, and highlight the need to further explore the α-ketoamides as potential antivirals for this ongoing COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...