Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 3(5): pgae151, 2024 May.
Article in English | MEDLINE | ID: mdl-38715728

ABSTRACT

The August 8, 2023R Lahaina fire refocused attention on wildfires, public alerts, and emergency management. Wildfire risk is on the rise, precipitated through a combination of climate change, increased development in the wildland-urban interface (WUI), decades of unmitigated biomass accumulation in forests, and a long history of emphasis on fire suppression over hazard mitigation. Stemming the tide of wildfire death and destruction will involve bringing together diverse scientific disciplines into policy. Renewed emphasis is needed on emergency alerts and community evacuations. Land management strategies need to account for the impact of climate change and hazard mitigation on forest ecosystems. Here, we propose a long-term strategy consisting of integrating wildfire risk management in wider-scope forest land management policies and strategies, and we discuss new technologies and possible scientific breakthroughs.

2.
J Hazard Mater ; 181(1-3): 324-34, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20546993

ABSTRACT

The purpose of this paper is to present a model-based approach to the analysis of the robustness of industrial emergency plans, established by the European Union SEVESO II Directive. Robustness is defined in terms of the capacity of the mechanism to respond to deteriorated conditions. Analysis of emergency plans has been so far based mainly upon lessons learned from past major accidents or exercises, which do not allow for an integral analysis of the response mechanism. The proposed methodology is based upon a systemic, hierarchical and generic model of an internal or external industrial emergency plan, using the FIS modeling approach. The process generally found within an industrial emergency plan is identified through the model. Potential failures are estimated through an a priori analysis of the plan model and an a posteriori analysis of lessons learned from exercises and past accidents. Assessment of the plan's functions is carried out via assessment checklists, structured via the systemic model for each of the plan's process. This approach can hence be used as a toolbox both for the assessment of existing plans and the development of industrial emergency plans.


Subject(s)
Accidents, Occupational , Disaster Planning/methods , Emergencies , Disaster Planning/standards , Guidelines as Topic , Methods
SELECTION OF CITATIONS
SEARCH DETAIL
...