Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 19(4): e0300466, 2024.
Article in English | MEDLINE | ID: mdl-38626058

ABSTRACT

Pretargeting, which is the separation of target accumulation and the administration of a secondary imaging agent into two sequential steps, offers the potential to improve image contrast and reduce radiation burden for nuclear imaging. In recent years, the tetrazine ligation has emerged as a promising approach to facilitate covalent pretargeted imaging due to its unprecedented kinetics and bioorthogonality. Pretargeted bone imaging with TCO-modified alendronic acid (Aln-TCO) is an attractive model that allows the evaluation of tetrazines in healthy animals without the need for complex disease models or targeting regimens. Recent structure-activity relationship studies of tetrazines evaluated important parameters for the design of potent tetrazine-radiotracers for pretargeted imaging. However, limited information is available for 99mTc-labeled tetrazines. In this study, four tetrazines intended for labeling with fac-[99mTc(OH2)3 (CO)3]+ were synthesized and evaluated using an Aln-TCO mouse model. 3,6-bis(2-pyridyl)-1,2,4,5-Tz without additional linker showed higher pretargeted bone uptake and less background activity compared to the same scaffold with a PEG8 linker or 3-phenyl-1,2,4,5-Tz-based compounds. Additionally, improved bone/blood ratios were observed in pretargeted animals compared to animals receiving directly labeled Aln-TCO. The results of this study implicate 3,6-bis(2-pyridyl)-1,2,4,5-Tz as a promising scaffold for potential 99mTc-labeled tetrazines.


Subject(s)
Heterocyclic Compounds , Tomography, X-Ray Computed , Animals , Mice , Tomography, Emission-Computed, Single-Photon/methods , Cell Line, Tumor , Radiopharmaceuticals , Positron-Emission Tomography/methods
2.
J Control Release ; 317: 375-384, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31765705

ABSTRACT

Using lipid-based drug delivery systems (LbDDS) is an efficient strategy to enhance the low oral bioavailability of poorly water-soluble drugs. Here the oral absorption of fenofibrate (FF) from LbDDS in rats was investigated in pharmacokinetic, in vitro lipolysis, and SPECT/CT in vivo imaging studies. The investigated formulations were soybean oil solution (SBO), a mixture of soybean oil and monoacyl phosphatidylcholine (MAPC) (SBO-MAPC), self-nanoemulsifying drug delivery systems with and without MAPC (SNEDDS-MAPC and SNEDDS, respectively), and an aqueous suspension (SUSP) as a reference. Oral bioavailability of the LbDDS ranged from 27 to 35%. A two-step in vitro lipolysis model simulating rat gastro-intestinal digestion provided in vitro FF solubilisation data to understand oral absorption. During the in vitro lipolysis, most FF was undissolved for SUSP and distributed into the poorly dispersed oil phase for SBO. For the SNEDDS without MAPC, practically all FF solubilised into the aqueous phase during the dispersion and digestion. Adding MAPC to SBO enhanced the dispersion of the oil phase into the digestion media while adding MAPC to SNEDDS resulted in a distribution of 29% of FF into the oil phase at the beginning of in vitro lipolysis. FF distribution into both oil and aqueous phases explained the higher and prolonged oral absorption of LbDDS containing MAPC. To elucidate the relatively low bioavailability of all formulations, FF and triolein were labeled with 123I and 125I, respectively, to study the biodistribution of drug and lipid excipients in a dual isotope SPECT/CT in vivo imaging study. The concentration of radiolabeled drug as a function of time in the heart correlated to the plasma curves. A significant amount of radiolabeled drug and lipids (i.e., 28-59% and 24-60% of radiolabeled drug and lipids, respectively) was observed in the stomach at 24 h post administration, which can be linked to the low bioavailability of the formulations. The current study for the first time combined in vitro lipolysis and dual isotope in vivo imaging to find the root cause of different fenofibrate absorption profiles from LbDDS and an aqueous suspension.


Subject(s)
Fenofibrate , Administration, Oral , Animals , Biological Availability , Drug Delivery Systems , Emulsions , Lipolysis , Rats , Solubility , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
3.
ACS Biomater Sci Eng ; 4(3): 1092-1102, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-33418793

ABSTRACT

Droplet microfluidics technology has recently been introduced to generate particles for many biomedical applications that include therapeutic embolizing agents in hepatic, uterine or bronchial arteries. Embolic agents are available in a variety of shapes and sizes that are adjusted according to the target vessel characteristics. Magnetic embolic agents can additionally be navigated to the target location (e.g., a tumor) through the blood system by applying an external magnetic field. This technology is termed Magnetic Resonance Navigation (MRN). Here we introduce a high throughput method to produce homogeneously sized magnetic microspheres (MMS) as blood vessel embolic agents for use in combination with MRN. The system for MMS production consists of a simple 3D printed micro coflowing device that is able to produce biocompatible, degradation rate controllable poly(lactic-co-glycolic acid) (PLGA) microspheres encasing magnetic nanoparticles. Axisymmetric flow is obtained with a central needle injecting the dispersed phase surrounded by a continuous phase and leads to the formation of size-controlled droplets that turn into homogeneously sized MMS linearly dependent on the inner needle diameter. MMS morphology, mean particle size and size distribution were quantified from SEM images. Magnetic performance of MMS was investigated using a vibrating sample magnetometer. MMS were nontoxic toward HUVEC (human umbilical vein endothelial cells) and HEK293 (human embryonic kidney) cells. The presented micro coflowing method allows for the reliable production of large MMS sized 130-700 µm with narrow size distribution (CV < 7%) and magnetic properties useful for MRN.

4.
Dalton Trans ; 46(29): 9654-9663, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28713886

ABSTRACT

Zirconium-89 (89Zr) is an ideal radiometal isotope for antibody-based positron emission tomography (immunoPET) as its physical half-life (3.27 days) is a good match with the biological half-life of larger molecular weight targeting molecules, such as antibodies (3-4 days), and its positron emission (BR = 100% EC/ß+, Eß+,avg = 395.5 keV) is suited for high resolution PET imaging. Concerns over the in vivo stability of the most commonly used 89Zr-chelator, desferrioxamine B (DFO), have spurred efforts into the development of alternative 89Zr-chelators that withstand the release of osteophilic 89Zr4+. Herein we report the new chelator 1,3-propanediamine-N,N,N',N'-tetrakis[(2-(aminomethyl)-3-hydroxy-1,6-dimethyl-4(1H)-pyridinone)acetamide] (THPN) based on four 3-hydroxy-4-pyridinone (3,4-HOPO) coordinating groups, as a potentially superior chelator over DFO. THPN has been demonstrated to quantitatively form a monometallic complex with Zr4+ within 10 min at ambient temperature at as low as 10-6 M concentrations of the chelator. The resulting complexes were studied in vitro and in vivo. The 89Zr-THPN complex was stable in serum and outperformed the 89Zr-DFO complex in a direct transchelation challenge. Healthy mice excreted 89Zr-THPN rapidly without signs of demetalation or residual organ uptake. This renders THPN as a promising alternative to DFO and introduces the first octadentate 3,4-HOPO chelator to the field.

5.
Toxicol Appl Pharmacol ; 252(3): 318-24, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21397622

ABSTRACT

The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role for metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Cytochrome P-450 Enzyme System/metabolism , Glutathione/metabolism , Oxidative Stress/drug effects , Valproic Acid/toxicity , Animals , Biotransformation , Cell Survival/drug effects , Hepatocytes , L-Lactate Dehydrogenase/analysis , Male , Rats , Rats, Sprague-Dawley , Tetrazolium Salts/chemistry , Time Factors
6.
Toxicol Sci ; 118(2): 501-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20861068

ABSTRACT

Valproic acid (VPA) is a drug known for idiosyncratic hepatotoxicity and is associated with oxidative stress. It is metabolized extensively with at least one pathway leading to reactive metabolites. The primary aim of the present study was to determine whether oxidative metabolites of VPA generated in situ contribute to the toxicity of the parent drug in sandwich-cultured rat hepatocytes. Concentration-response experiments with VPA produced median effective concentration values (mean ± SEM) of 1.1 ± 0.4, 12.2 ± 1.4, and 12.3 ± 1.9mM in the 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1; cell viability), lactate dehydrogenase (LDH; necrosis), and 2',7'-dichlorofluorescein (DCF; oxidative stress) assays, respectively. At equimolar concentrations, only the unsaturated metabolites of VPA gave responses comparable to VPA, with 2,4-diene-VPA calculated to be 3-, 6-, and 10-fold more potent than VPA in the WST-1, LDH, and DCF assays, respectively. In support of a role for reactive metabolites, 2-fluoro-2-propylpentanoic acid, which is relatively resistant to biotransformation to form a 2,4-diene metabolite, yielded little or no toxicity when compared with the nonhepatotoxic octanoic acid or the vehicle-treated control. By comparison, attenuating the in situ formation of 2-propylpent-4-enoic acid (4-ene-VPA), 3-hydroxy-2-propylpentanoic acid, 4-hydroxy-2-propylpentanoic acid, and 5-hydroxy-2-propylpentanoic acid by an inhibitor of cytochrome P450 (1-aminobenzotriazole) did not alter the effects of VPA on the WST-1, LDH, or DCF assay. Overall, VPA toxicity in sandwich-cultured rat hepatocytes is independent of the in situ formation of cytochrome P450-dependent oxidative metabolites, including 4-ene-VPA. However, the data obtained from structural analogues of VPA suggest that biotransformation does appear to play a role in VPA toxicity in rat hepatocytes.


Subject(s)
Energy Metabolism , Enzyme Inhibitors/toxicity , Hepatocytes/drug effects , Valproic Acid/toxicity , Animals , Biomarkers/metabolism , Cell Culture Techniques/methods , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Hepatocytes/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Necrosis/chemically induced , Oxidation-Reduction , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacokinetics , tert-Butylhydroperoxide/toxicity
7.
Free Radic Biol Med ; 38(11): 1471-83, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15890621

ABSTRACT

Oxidative stress has been associated with valproic acid (VPA) treatment in rats and studies are ongoing to examine the relationship between VPA biotransformation and the increase in the lipid peroxidation biomarker 15-F2t-isoprostane (15-F2t-IsoP). This study investigated the effects of modulating VPA-1-O-acyl glucuronide (VPA-G) formation on 15-F2t-IsoP levels. Adult male Sprague-Dawley rats were pretreated with phenobarbital (PB; 80 mg/kg/day for 4 days), (-)-borneol (320 mg/kg), or a combination of both before VPA treatment (500 mg/kg). Liver VPA-G levels were determined by LC/MS and plasma and liver 15-F2t-IsoP levels were measured using an EIA method. PB, an inducer of VPA glucuronidation, elevated both liver VPA-G and plasma and liver 15-F2t-IsoP levels in VPA-treated rats. (-)-Borneol, an inhibitor of glucuronidation, significantly reduced the levels of liver VPA-G and decreased plasma and liver 15-F2t-IsoP levels in both the VPA and the PB + VPA groups. (-)-Borneol and PB alone did not elevate 15-F2t-IsoP levels compared to the vehicle control groups. The fluorinated analogue of VPA, alpha-fluoro-VPA, was a poor substrate for glucuronidation and did not elevate 15-F2t-IsoP levels. In summary, the VPA-induced formation of 15-F2t-IsoP is apparently associated with VPA glucuronidation.


Subject(s)
Dinoprost/analogs & derivatives , Glucuronic Acid/metabolism , Valproic Acid/metabolism , Animals , Camphanes/pharmacology , Chromatography , Chromatography, Liquid , Dinoprost/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Free Radicals , Lipid Peroxidation , Liver/metabolism , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Oxidative Stress , Phenobarbital/pharmacology , Rats , Rats, Sprague-Dawley , Time Factors , Valproic Acid/chemistry , Valproic Acid/pharmacology , Vasoconstrictor Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...