Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 17(1): 276, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30060747

ABSTRACT

BACKGROUND: Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. METHODS: Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. RESULTS: This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. CONCLUSIONS: This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group.


Subject(s)
Anopheles/genetics , Chromosome Mapping , Polytene Chromosomes , Animals , Anopheles/metabolism , In Situ Hybridization, Fluorescence , Malaria/transmission , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Salivary Glands/metabolism
2.
Comp Cytogenet ; 10(1): 45-59, 2016.
Article in English | MEDLINE | ID: mdl-27186337

ABSTRACT

Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in the Pamphagidae species studied make the family a very promising and useful model for studying sex chromosome evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...