Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(41): e202310603, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37610555

ABSTRACT

Triazoles are an important class of compounds with widespread applications. Functionalization of the triazole backbone is thus of significant interest. In comparison to 1,2,3-triazoles, C-H activation-functionalization of the congeners 1,2,4-triazoles is surprisingly underdeveloped. Indeed, no such C-H activation-functionalization has been reported for 4-substituted 1,2,4-triazole cores. Furthermore, although denitrogenative ring-opening of 1,2,3-triazoles is well-explored, 1,2,4-triazole/triazolium substrates have not been known to exhibit N-N bond-cleaving ring-opening reactivity so far. In this work, we unveiled an unusual hidden reactivity of the 1,2,4-triazole backbone involving the elusive N-N bond-cleaving ring-opening reaction. This new reactivity was induced by a Satoh-Miura-type C-H activation-annulation at the 1,2,4-triazole motif appended with a pyridine directing group. This unique reaction allowed ready access to a novel class of unsymmetrically substituted 2,2'-dipyridylamines, with one pyridine ring fully-substituted with alkyl groups. The unsymmetrical 2,2'-dipyridylamines were utilized to access unsymmetrical boron-aza-dipyridylmethene fluorescent dyes. Empowered with desirable optical/physical properties such as large Stokes shifts and suitable hydrophobicity arising from optimal alkyl chain length at the fully-substituted pyridine-ring, these dyes were used for intracellular lipid droplet-selective imaging studies, which provided useful information toward designing suitable lipid droplet-selective imaging probes for biomedical applications.

2.
J Am Chem Soc ; 145(31): 17321-17328, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37499097

ABSTRACT

Generation of clean energy in a viable manner demands efficient and sustainable catalysts. One prospective method of clean energy generation is the electrochemical hydrogen evolution reaction (HER). Over the years, various transition metal-based complexes/polymeric organic materials were utilized in HER. However, the use of a redox-active small organic molecule as a catalyst for HER has not been explored well. The requirements of a strongly acidic solution, very high overpotential, and stability under acidic conditions pose several challenges for applying organic electrocatalysts for HER. Considering these challenges, herein, we demonstrated an NADP+-like organic system (NADP+ = nicotinamide adenine dinucleotide phosphate), a bis-imidazolium-fused heterohelicene, which acts as a catalyst for HER with mild acid (acetic acid) as a proton source at moderate overpotential. The unique structural backbone of this dicationic heterohelicene allowed to exploit the NADP+/NADPH-type (NADPH = reduced nicotinamide adenine dinucleotide phosphate) hydride transfer-based redox cycle efficiently under the applied conditions, where the NADPH-like hydride intermediate transfers the hydride to the proton of the mild acid to generate H2. The Faradaic efficiency and turnover number for the present HER were achieved up to 85 ± 5% and 50 ± 3, respectively. In addition, the maximum turnover frequency, TOFmax, value of 410 s-1 was observed, which is around 400 times that obtained for the existing reported NADP+-like organic compounds used as catalysts for HER. Thorough mechanistic studies were conducted experimentally and computationally to establish a plausible catalytic cycle. This advancement could help in designing efficient organic electrocatalysts for HER from a mild proton source.

3.
J Am Chem Soc ; 145(13): 7230-7241, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36944228

ABSTRACT

Biomimetic NAD(P)H-type organic hydride donors have recently been advocated as potential candidates to act as metal-free catalysts for fuel-forming reactions such as the reduction of CO2 to formic acid and methanol, similar to the natural photosynthesis process of fixing CO2 into carbohydrates. Although these artificial synthetic organic hydrides are extensively used in organic reduction chemistry in a stoichiometric manner, translating them into catalysts has been challenging due to problems associated with the regeneration of these hydride species under applied reaction conditions. A recent discovery of the possibility of their regeneration under electrochemical conditions via a proton-coupled electron-transfer pathway triggered intense research to accomplish their catalytic use in electrochemical CO2 reduction reactions (eCO2RR). However, success is yet to be realized to term them as "true" catalysts, as the typical turnover numbers (TONs) of the eCO2RR processes on inert electrodes for the production of formic acid and/or methanol reported so far are still in the order of 10-3-10-2; thus, sub-stoichiometric only! Herein, we report a novel class of structurally engineered heterohelicene-based organic hydride donor with a proof-of-principle demonstration of catalytic electrochemical CO2 reduction reaction showing a significantly improved activity with more than stoichiometric turnover featuring a 100-1000-fold enhancement of the existing TON values. Mechanistic investigations suggested the critical role of the two cationic imidazolium motifs along with the extensive π-conjugation present in the backbone of the heterohelicene molecules in accessing and stabilizing various radical species involved in the generation and transfer of hydride, via multielectron-transfer steps in the electrochemical process.

4.
Chem Sci ; 13(37): 11163-11173, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320460

ABSTRACT

Structurally engineered molecules which can behave as stimuli-controlled mechanical nanomachines such as molecular shuttles, rotors, ratchets, and springs are important in several research areas, including molecular robotics, actuation, sensing, cargo transportation, etc. Helicenes, by virtue of their unique screw-type structures, were proposed as functional models for molecular springs; however, experimental realization has remained an elusive and unmet task until now, because of the lack of appropriate helicene molecules consisting of backbone-decorated dynamic architectures. Aiming to explore this unearthed direction, we present herein a novel class of modular flexible heterohelicenes with a stimuli (acid/base and light)-responsive core and peripheral modules. By applying pH (at core-embedded free imidazole sites) and light (at backbone-tethered dithienylethene units) stimuli, we demonstrate that these flexible heterohelicenes exhibit spring-like movement, with the reversible contraction/extension of the helical pitch. The uniquely functionalized structure of these molecules played a critical role in bestowing such capability, as revealed by crystallographic, spectroscopic and computational data. Careful assessment disclosed that the protonation/deprotonation-induced reversible generation and delocalization of positive charge throughout the π-conjugated helical rim switch the operative interactions between the π clouds of the terminal overlapping arene rings of the helicenes between repulsive and attractive, leading to extension/contraction of the helical pitch. On the other hand, in the case of the light stimulus, it was analyzed that the light-induced ring-closure of the photoactive dithienylethene units created a geometric distortion causing the helicenic wings to bend outward from the helicene rim, which resulted in extension of the helical pitch. The photo-assisted (or thermal) reverse ring-opening reaction converted the system to its original conformation, thus enabling the helicene molecule to display spring-like reversible extension/contraction motion. The new insights on the reversible dynamic features of this class of heterohelicenes under the influence of external stress would guide crucial design principles of helicene-based molecular springs for potential applications.

5.
Chem Commun (Camb) ; 58(2): 133-154, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34849515

ABSTRACT

Cationic π-conjugated organic molecules have broad applications in materials science as next-generation organic materials. The annulative alkyne-insertion π-extension (AAIPEX) strategy has emerged as a promising synthetic approach for the rapid synthesis of cationic polycyclic heteroaromatic compounds (cPHACs) in a single step. The AAIPEX reaction provides a synthetic shortcut to achieve complex organic molecules from simple (hetero)arene templates and alkynes as π-extending partners, which would otherwise be difficult to achieve using traditional methods. In general, a step-economic AAIPEX protocol proceeds via C-H activation of unfunctionalized heteroarene templates, followed by alkyne insertion-annulation to furnish cPHACs. In this Feature Article, recent progress in the AAIPEX strategy to construct cPHACs is described along with brief illustrations of the resulting cPHACs in luminescence-related applications.

6.
Chem Commun (Camb) ; 55(47): 6791-6794, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31120459

ABSTRACT

Disclosed herein is a rhodium(iii)-catalyzed novel one-step back-to-back double rollover annulation on pyridine and pyrazine backbones leading to a structurally and optoelectronically diverse class of nicely decorated multi-ring-fused, extensively π-conjugated, N-enriched PAH molecules by virtue of orchestrated quadruple C-H activation events. Selected N-PAHs have been utilized as potential mitochondria and lysosome markers.

7.
J Org Chem ; 83(18): 11458-11462, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30110539

ABSTRACT

An efficient method for visible-light-triggered generation of radicals from mono- and dinitro-substituted perylenediimide derivatives is developed. UV-vis-NIR and electron paramagnetic resonance measurements were carried out to confirm the formation of radicals. Most importantly, these radical anions were remarkably stable for several months. Subsequently, the reversible nature of anions was validated by both chemical and spectroelectrochemical methods for applications in electrochromic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...