Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 102(3): 965-975, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34302363

ABSTRACT

BACKGROUND: Ellagic acid (EA), a potent dietary antioxidant, has limited bioavailability owing to its rapid absorption in the stomach and small intestine, and EA is transformed to more bioavailable compounds - urolithins - in the colon. An encapsulation system that sustains the release of EA in the gastrointestinal system and delivers more EA into the colon could improve the oral bioavailability of EA. Electrosprayed EA-loaded alginate-pectin beads were produced and coated with low- (LC) and high-molecular-weight chitosan (HC). The EA release from uncoated and coated beads under simulated gastrointestinal conditions was evaluated. The samples were characterized by particle size, gel strength, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analysis. RESULTS: The encapsulation efficiency (EE%) of EA ranged from 49.53% to 69.85% for uncoated beads, which was elevated up to 86.50% by coating, and LC coating provided higher EE%. Pectin addition to alginate and chitosan coating reduced the gel strength and changed the size depending on the molecular weight of chitosan. SEM images of pectin-added beads showed fewer cracks but more wrinkles, and chitosan coating presented more aggregated surfaces. The ionic interaction of alginate-pectin-chitosan and the entrapment of EA were confirmed by FTIR. In the gastric medium, EA release was very low from uncoated beads (15.2-19.8%), and totally restricted by chitosan coating. In the intestinal stage, EA release from LC-coated alginate-pectin beads was only 18%, and it was between 55% and 65% for uncoated or HC-coated counterparts. CONCLUSION: The LC-coated alginate-pectin beads could be further explored as a potential system for colon-targeted delivery of EA. © 2021 Society of Chemical Industry.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Drug Delivery Systems/methods , Ellagic Acid/chemistry , Pectins/chemistry , Biological Availability , Colon/drug effects , Drug Carriers/chemistry , Drug Compounding , Drug Delivery Systems/instrumentation , Ellagic Acid/pharmacology , Particle Size
2.
Biotechnol Prog ; 35(6): e2876, 2019 11.
Article in English | MEDLINE | ID: mdl-31237985

ABSTRACT

Reactive oxygen species can bind protein, DNA, lipids, and carbohydrates and thus cause an oxidation reaction that induces various syndromes such as cardiovascular diseases, degenerative disease, and cancer types in the human body. Bioactive compounds, such as PUFA, EPA, DHA, and carotenoids in algae, have a chain ring and protect the tissue from chemical damage and reverse the symptoms of some diseases. Algal bioactives also have various biological properties such as anticoagulants, antiviral, antiangiogenic, antitumor, anti-inflammatory, antioxidant, antiproliferative, and immune modulation properties. This study aimed to show in vitro cytotoxic activity effect of Chlorella protothecoides and Nannochloropsis oculata microalgal extracts loaded nano-microparticles on A-172 (Homo sapiens brain glioblastoma) and HCT-116 (H. sapiens colon colorectal carcinoma) cell lines because of the increasing importance of algal biotechnology. MTT viability tests were performed on HUVEC, A172, and HCT 116 cells with particles obtained at optimum process parameters. The cell viability rates of encapsulated particles were also compared with pure algae extracts. Microalgal extracts loaded nano-micro particles showed very promising results for cytotoxic effect on cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Microalgae , Biotechnology , Cell Survival/drug effects , Emulsions , HCT116 Cells , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Microalgae/chemistry , Nanoparticles , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...