Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500156

ABSTRACT

We present studies on the microwave properties, electrical resistivity, and low-frequency (10 Hz-20 kHz) noise characteristics in the temperature range of 78 K to 380 K of composite materials made from bisphenol A-based epoxy resin and carbon fiber felts. Two types of carbon fibers were used, derived from polyacrylonitrile or regenerated cellulose. We show that these structures are suitable for electromagnetic shielding applications, especially in the direction parallel to the carbon fibers. The low-frequency voltage fluctuations observed in these materials are of the 1/fα, and the noise intensity is proportional to the square of the voltage. The characteristics of the investigated materials show an instability in the temperature range from 307 K to 332 K. This effect is followed by an increase in resistivity and noise intensity, but it does not change the character of the noise, and this instability vanishes after a few repeated heating and cooling cycles.

2.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35808136

ABSTRACT

Vertically aligned carbon nanotubes (VACNT) are manufactured nanomaterials with excellent properties and great potential for numerous applications. Recently, research has intensified toward achieving VACNT synthesis on different planar and non-planar substrates of various natures, mainly dependent on the user-defined application. Indeed, VACNT growth has to be adjusted and optimized according to the substrate nature and shape to reach the requirements for the application envisaged. To date, different substrates have been decorated with VACNT, involving the use of diffusion barrier layers (DBLs) that are often insulating, such as SiO2 or Al2O3. These commonly used DBLs limit the conducting and other vital physico-chemical properties of the final nanomaterial composite. One interesting route to improve the contact resistance of VACNT on a substrate surface and the deficient composite properties is the development of semi-/conducting interlayers. The present review summarizes different methods and techniques for the deposition of suitable conducting interfaces and controlled growth of VACNT on diverse flat and 3-D fibrous substrates. Apart from exhibiting a catalytic efficiency, the DBL can generate a conducting and adhesive interface involving performance enhancements in VACNT composites. The abilities of different conducting interlayers are compared for VACNT growth and subsequent composite properties. A conducting interface is also emphasized for the synthesis of VACNT on carbonaceous substrates in order to produce cost-effective and high-performance nano-engineered carbon composites.

3.
Materials (Basel) ; 14(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916433

ABSTRACT

The ability of various commercial fibrous carbon materials to withstand stress and conduct heat has been evaluated through experimental and analytical studies. The combined effects of different micro/macro-structural characteristics were discussed and compared. Large differences in mechanical behavior were observed between the different groups or subgroups of fibrous materials, due to the different types of fibers and the mechanical and/or chemical bonds between them. The application of the Mooney-Rivlin model made it possible to determine the elastic modulus of soft felts, with a few exceptions, which were studied in-depth. The possible use of two different mechanical test methods allowed a comparison of the results in terms of elastic modulus obtained under different deformation regimes. The effective thermal conductivity of the same fibrous materials was also studied and found to be much lower than that of a single carbon fiber due to the high porosity, and varied with the bulk density and the fiber organization involving more or less thermal contact resistances. The thermal conductivity of most materials is highly anisotropic, with higher values in the direction of preferential fiber orientation. Finally, the combination of compression and transient thermal conductivity measurement techniques allowed the heat conduction properties of the commercial fibrous carbons to be investigated experimentally when compressed. It was observed that thermal conductivity is strongly affected under compression, especially perpendicular to the main fiber orientation.

4.
Materials (Basel) ; 12(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861115

ABSTRACT

The growing trend towards sustainable energy production, while intermittent, can meet all the criteria of energy demand through the use and development of high-performance thermal energy storage (TES). In this context, high-temperature hybrid TES systems, based upon the combination of fibrous carbon hosts and peritectic phase change materials (PCMs), are seen as promising solutions. One of the main conditions for the operational viability of hybrid TES is the chemical inertness between the components of the system. Thus, the chemical stability and compatibility of several commercial carbon felts (CFs) and molten lithium salts are discussed in the present study. Commercial CFs were characterised by elemental analysis, X-ray diffraction (XRD) and Raman spectroscopy before being tested in molten lithium salts: LiOH, LiBr, and the LiOH/LiBr peritectic mixture defined as our PCM of interest. The chemical stability was evaluated by gravimetry, gas adsorption and scanning electron microscopy (SEM). Among the studied CFs, the materials with the highest carbon purity and the most graphitic structure showed improved stability in contact with molten lithium salts, even under the most severe test conditions (750 °C). The application of the Arrhenius law allowed calculating the activation energy (in the range of 116 to 165 kJ mol-1), and estimating the potential stability of CFs at actual application temperatures. These results confirmed the applicability of CFs as porous hosts for stabilising peritectic PCMs based on molten lithium salts.

SELECTION OF CITATIONS
SEARCH DETAIL
...