Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 129(9): 1769-74, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26966185

ABSTRACT

Primary cilia are microtubule structures that extend from the distal end of the mature, mother centriole. CEP164 is a component of the distal appendages carried by the mother centriole that is required for primary cilium formation. Recent data have implicated CEP164 as a ciliopathy gene and suggest that CEP164 plays some roles in the DNA damage response (DDR). We used reverse genetics to test the role of CEP164 in the DDR. We found that conditional depletion of CEP164 in chicken DT40 cells using an auxin-inducible degron led to no increase in sensitivity to DNA damage induced by ionising or ultraviolet irradiation. Disruption of CEP164 in human retinal pigmented epithelial cells blocked primary cilium formation but did not affect cellular proliferation or cellular responses to ionising or ultraviolet irradiation. Furthermore, we observed no localisation of CEP164 to the nucleus using immunofluorescence microscopy and analysis of multiple tagged forms of CEP164. Our data suggest that CEP164 is not required in the DDR.


Subject(s)
Cell Nucleus/metabolism , DNA Repair , Microtubule Proteins/metabolism , Retinal Pigment Epithelium/metabolism , Animals , Cell Nucleus/pathology , Chickens , Cilia/genetics , Cilia/metabolism , DNA Damage , Gene Editing , HeLa Cells , Humans , Jurkat Cells , Microtubule Proteins/genetics , Retinal Pigment Epithelium/pathology , Ultraviolet Rays/adverse effects
2.
PLoS One ; 8(2): e56308, 2013.
Article in English | MEDLINE | ID: mdl-23457546

ABSTRACT

Overexpression of ecotropic viral integration site 1 (EVI1) is associated with aggressive disease in acute myeloid leukemia (AML). Despite of its clinical importance, little is known about the mechanism through which EVI1 confers resistance to antileukemic drugs. Here, we show that a human myeloid cell line constitutively overexpressing EVI1 after infection with a retroviral vector (U937_EVI1) was partially resistant to etoposide and daunorubicin as compared to empty vector infected control cells (U937_vec). Similarly, inducible expression of EVI1 in HL-60 cells decreased their sensitivity to daunorubicin. Gene expression microarray analyses of U937_EVI1 and U937_vec cells cultured in the absence or presence of etoposide showed that 77 and 419 genes were regulated by EVI1 and etoposide, respectively. Notably, mRNA levels of 26 of these genes were altered by both stimuli, indicating that EVI1 regulated genes were strongly enriched among etoposide regulated genes and vice versa. One of the genes that were induced by both EVI1 and etoposide was CDKN1A/p21/WAF, which in addition to its function as a cell cycle regulator plays an important role in conferring chemotherapy resistance in various tumor types. Indeed, overexpression of CDKN1A in U937 cells mimicked the phenotype of EVI1 overexpression, similarly conferring partial resistance to antileukemic drugs.


Subject(s)
Apoptosis/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/pathology , Myeloid Cells/drug effects , Transcription Factors/metabolism , Up-Regulation/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , Daunorubicin/pharmacology , Etoposide/pharmacology , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MDS1 and EVI1 Complex Locus Protein , Mice , Myeloid Cells/metabolism , Myeloid Cells/pathology , Proto-Oncogenes/genetics , Transcription Factors/genetics
3.
Cell Cycle ; 11(18): 3492-503, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22894935

ABSTRACT

Ectopic viral integration site 1 (EVI1), a transcription factor frequently overexpressed in myeloid neoplasias, has been implicated in the generation of malignancy-associated centrosomal aberrations and chromosomal instability. Here, we sought to investigate the underlying cause of centrosome amplification in EVI1-overexpressing cells. We found that overexpression of EVI1-HA in U2OS cells induced supernumerary centrosomes, which were consistently associated with enlarged nuclei or binuclear cells. Live cell imaging experiments identified cytokinesis failure as the underlying cause of this phenotype. In accordance with previous reports, EVI1 overexpression induced a partial cell cycle arrest in G0/1 phase, accompanied by elevated cyclin D1 and p21 levels, reduced Cdk2 activity and activation of the p53 pathway. Supernumerary centrosomes predominantly occurred in resting cells, as identified by low levels of the proliferation marker Ki-67, leading to the conclusion that they result from tetraploidization after cytokinesis failure and are confined to G0/1-arrested tetraploid cells. Depletion of p53 using siRNA revealed that further polyploidization of these cells was inhibited by the p53-dependent tetraploidy checkpoint.


Subject(s)
Centrosome/metabolism , Cytokinesis , DNA-Binding Proteins/metabolism , G1 Phase , Resting Phase, Cell Cycle , Transcription Factors/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Feedback, Physiological , Humans , Ki-67 Antigen/metabolism , MDS1 and EVI1 Complex Locus Protein , Polyploidy , Proto-Oncogenes , Signal Transduction , Tumor Suppressor Protein p53/metabolism
4.
Nat Med ; 16(2): 198-204, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20098431

ABSTRACT

Gene-modified autologous hematopoietic stem cells (HSC) can provide ample clinical benefits to subjects suffering from X-linked chronic granulomatous disease (X-CGD), a rare inherited immunodeficiency characterized by recurrent, often life-threatening bacterial and fungal infections. Here we report on the molecular and cellular events observed in two young adults with X-CGD treated by gene therapy in 2004. After the initial resolution of bacterial and fungal infections, both subjects showed silencing of transgene expression due to methylation of the viral promoter, and myelodysplasia with monosomy 7 as a result of insertional activation of ecotropic viral integration site 1 (EVI1). One subject died from overwhelming sepsis 27 months after gene therapy, whereas a second subject underwent an allogeneic HSC transplantation. Our data show that forced overexpression of EVI1 in human cells disrupts normal centrosome duplication, linking EVI1 activation to the development of genomic instability, monosomy 7 and clonal progression toward myelodysplasia.


Subject(s)
Chromosomes, Human, Pair 7 , DNA-Binding Proteins/genetics , Genetic Therapy , Genomic Instability , Granulomatous Disease, Chronic/therapy , Monosomy , Myelodysplastic Syndromes/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , Adult , Humans , MDS1 and EVI1 Complex Locus Protein , NADPH Oxidases/metabolism , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...