Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(2): eaao3547, 2018 02.
Article in English | MEDLINE | ID: mdl-29492456

ABSTRACT

A valence critical end point existing near the absolute zero provides a unique case for the study of a quantum version of the strong density fluctuation at the Widom line in the supercritical fluids. Although singular charge and orbital dynamics are suggested theoretically to alter the electronic structure significantly, breaking down the standard quasi-particle picture, this has never been confirmed experimentally to date. We provide the first empirical evidence that the proximity to quantum valence criticality leads to a clear breakdown of Fermi liquid behavior. Our detailed study of the mixed valence compound α-YbAlB4 reveals that a small chemical substitution induces a sharp valence crossover, accompanied by a pronounced non-Fermi liquid behavior characterized by a divergent effective mass and unusual T/B scaling in the magnetization.

2.
Science ; 331(6015): 316-9, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21252341

ABSTRACT

Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point by using a control parameter such as the magnetic field, pressure, or chemical composition. Our high-precision magnetization measurements of the ultrapure f-electron-based superconductor ß-YbAlB(4) demonstrate a scaling of its free energy that is indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi liquid behavior takes place in a mixed-valence state, which is in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.

3.
Inorg Chem ; 45(2): 529-46, 2006 Jan 23.
Article in English | MEDLINE | ID: mdl-16411688

ABSTRACT

A series of Ni(4) cubane complexes with the composition [Ni(hmp)(ROH)Cl](4) complexes 1-4 where R= -CH(3) (complex 1), -CH(2)CH(3) (complex 2), -CH(2)CH(2)(C(4)H(9)) (complex 3), -CH(2)CH(2)CH(2)(C(6)H(11)) (complex 4), hmp(-) is the anion of 2-hydroxymethylpyridine, t-Buhmp(-) is the anion of 4-tert-butyl-2-hydroxymethylpyridine, and dmb is 3,3-dimethyl-1-butanol] and [Ni(hmp)(dmb)Br](4) (complex 5) and [Ni(t-Buhmp)(dmb)Cl](4) (complex 6) were prepared. All six complexes were characterized by dc magnetic susceptibility data to be ferromagnetically coupled to give an S = 4 ground state with significant magnetoanisotropy (D approximately equal to -0.6 cm(-1)). Magnetization hysteresis measurements carried out on single crystals of complexes 1-6 establish the single-molecule magnet (SMM) behavior of these complexes. The exchange bias observed in the magnetization hysteresis loops of complexes 1 and 2 is dramatically decreased to zero in complex 3, where the bulky dmb ligand is employed. Fast tunneling of magnetization is observed for the high-symmetry (S(4) site symmetry) Ni(4) complexes in the crystal of complex 3, and the tunneling rate can even be enhanced by destroying the S(4) site symmetry, as is the case for complex 4, where there are two crystallographically different Ni(4) molecules, one with C(2) and the other with C(1) site symmetry. Magnetic ordering temperatures due to intermolecular dipolar and magnetic exchange interactions were determined by means of very low-temperature ac susceptibility measurements; complex 1 orders at 1100 mK, complex 3 at 290 mK, complex 4 at approximately 80 mK, and complex 6 at <50 mK. This confirms that bulkier ligands correspond to more isolated molecules, and therefore, magnetic ordering occurs at lower temperatures for those complexes with the bulkiest ligands.

4.
Chemistry ; 11(3): 843-8, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15593069

ABSTRACT

The reaction of 1/3 equivalent of CuCl2.2H2O with MnCl2.4H2O and 5-bromo-2-salicylideneamino-1-propanol (H(2)5-Br-sap) in methanol gave dark brown crystals of [MnIIICuIICl(5-Br-sap)2(MeOH)] (1). Complex 1 has an alkoxo-bridged dinuclear core of MnIII and CuII ions, which have elongated octahedral and square-planar coordination geometries, respectively. In dc magnetic susceptibility measurements, chi(m)T values increased as the temperature was lowered, followed by a sudden decrease below 20 K. This behavior is indicative of the occurrence of intramolecular ferromagnetic interactions, and fitting gave an S=5/2 spin ground state with an exchange coupling constant J(MnCu) of +78 cm(-1). Magnetization data collected as a function of temperature and applied magnetic field were analyzed by using a spin Hamiltonian with isotropic Zeeman and axial zero-field splitting (ZFS) terms, and a negative D(5/2) value (-1.86 cm(-1)) was obtained. A high-field EPR (HFEPR) spectrum (342.0 GHz) at 4.2 K was composed of four peaks, and two additional peaks at higher magnetic field appeared as the temperature was increased. The temperature dependences in the HFEPR spectra are indicative of a negative D(5/2) value, and fitting of the data gave D(5/2)=-1.81 cm(-1). In the ac magnetic susceptibility measurements, frequency dependent in-phase (chi(m)') and out-of-phase (chi(m)'') signals with peak maxima at 0.7-1.5 K were observed and small peaks below 0.7 K appeared. The ac susceptibility data supports that 1 is a single-molecule magnet (SMM). Arrhenius plots for the chi(m)'' peaks from 0.7-1.5 K gave the re-orientation energy barrier (DeltaE) of 10.5 K with a pre-exponential factor of 8.2x10(-8) s.


Subject(s)
Copper/chemistry , Magnetics , Manganese/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Models, Molecular , Organometallic Compounds/chemical synthesis , Temperature
5.
Phys Rev Lett ; 92(2): 025301, 2004 Jan 16.
Article in English | MEDLINE | ID: mdl-14753941

ABSTRACT

Direct demagnetization has been made for two-dimensional solid 3He in both the paramagnetic and the antiferromagnetic phases. The lowest temperature is about 10 microK, judging from the observed magnetization for the paramagnetic solid 3He. The magnetization of the antiferromagnetic solid 3He shows a gradual increase to about 10 microK for the 4/7 phase adsorbed on both one layer of 4He and two layers of HD preplated graphite. This strongly suggests that the triangular antiferromagnet with the higher order multiple exchange has a quantum spin liquid ground state with nearly zero or extremely small spin gap less than 10 microK.

SELECTION OF CITATIONS
SEARCH DETAIL
...