Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 208: 111286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38498957

ABSTRACT

Dried figs were studied by Electron Paramagnetic Resonance (EPR) spectroscopy for identification of radiation treatment and dosage assessment. Gamma-irradiated samples show a multicomponent "sugar-like" EPR spectrum with line width of 6-8 mT, centered at g = 2.004. The investigation of the influence of the instrumental parameters microwave power and modulation amplitude on the EPR signal show saturation effect at microwave power above 2 mW and over modulation at modulation amplitude above 0.4 mT. Determination of the stability of radiation induced signals shows, that identification of previous radiation treatment is possible for a long time period after irradiation even more than one year. Dose-response curves of gamma-irradiated samples exhibits a linear response up to about 4 kGy and the saturation of the EPR signal at higher doses. A Single Aliquot Additive dosing method used to estimate the initial absorbed dose in irradiated dried fig flesh shows initial dose 0.25 kGy for the sample irradiated by 5 kGy and 3.7 kGy for those irradiated using 10 kGy. Taking into account the signal decay after 150 days of storage, the dose defined as initial should be 4.65 kGy for the 5 kGy irradiated sample and 8 kGy for that irradiated using 10 kGy.


Subject(s)
Ficus , Electron Spin Resonance Spectroscopy/methods , Gamma Rays
2.
Materials (Basel) ; 16(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895766

ABSTRACT

New results on the effect of TiO2 on Pd/La2O3-CeO2-Al2O3 systems for catalytic oxidation of methane in the presence of H2O and SO2 have been received. Low-temperature N2-adsorption, XRD, SEM, HRTEM, XPS, EPR and FTIR techniques were used to characterize the catalyst. The presence of Ce3+ on the catalytic surface and in the volume near the lantana was revealed by EPR and XPS. After aging, the following changes are observed: (i) agglomeration of the Pd-clusters (from 8 nm to 12 nm); (ii) transformation of part of the TiO2 from anatase to larger particles of rutile; and (iii)-the increase in PdO/Pd-ratio above its optimum. The modification by Ti of the La2O3-CeO2-Al2O3 system leads to higher resistance towards the presence of SO2 most likely due to the prevailing formation of unstable surface sulfites instead of thermally stable sulfates. Based on kinetic model calculations, the reaction pathway over the Pd/La2O3-CeO2-TiO2-Al2O3 catalyst follows the Mars-van Krevelen mechanism. For evaluation of the possible practical application of the obtained material, a sample of Pd/La2O3-CeO2-TiO2-Al2O3, supported on rolled aluminum-containing stainless steel (Aluchrom VDM®), was prepared and tested. Methane oxidation in an industrial-scale monolithic reactor was simulated using a two-dimensional heterogeneous reactor model.

3.
Molecules ; 28(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36838733

ABSTRACT

A comparative investigation of amino acids (proline, cysteine, and alanine) as dosimetric materials using electron paramagnetic resonance (EPR) spectroscopy in the absorbed dosage range of 1-25 kGy is presented. There were no signals in the EPR spectra of the samples before irradiation. After irradiation, the complex spectra were recorded. These results showed that the investigated amino acids were sensitive to radiation. In the EPR spectrum of cysteine after irradiation, RS• radicals dominated. The effects of the microwave power on the saturation of the EPR signals showed the presence of at least three different types of free radicals in proline. It was also found out that the DL-proline and cysteine had stable free radicals after irradiation and represented a linear dosage response up to 10 kGy. On the other hand, the amino acid alanine has been accepted by the International Atomic Energy Agency as a transfer standard dosimetry system. In view of this, the obtained results of the proline and cysteine studies have been compared with those of the alanine studies. The results showed that the amino acids proline and cysteine could be used as alternative dosimetric materials in lieu of alanine in a dosage range of 1-10 kGy of an absorbed dose of γ-rays using EPR spectroscopy. Regarding the radiation sensitivity, the following order of decreased dosage responses was determined: alanine > DL-proline > cysteine > L-proline.


Subject(s)
Amino Acids , Cysteine , Electron Spin Resonance Spectroscopy/methods , Alanine/chemistry , Proline , Free Radicals/chemistry
4.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771103

ABSTRACT

Gamma irradiation has been applied as an efficient and inexpensive method for the sterilization of nuts for years. However, along with the benefits of such treatment, negative effects are possible because of the formation of reactive oxygen species with a toxic effect on important biologically active substances. Because of the scarce and contradictory information in the literature about gamma-irradiated almonds, the aim of our work was the examination of the lipid changes, antioxidant activity, and oxidative stability of almonds treated by 10 and 25 kGy gamma rays, as well as changes in intensity of the EPR spectra as an indicator for the stability of radiation-induced free radicals. The results revealed no significant differences in the EPR spectra of almonds treated at 10 and 25 kGy doses, neither in their intensity nor in kinetic behaviour. The EPR signals decayed exponentially over 250 days, with a decreasing of central line by 90%, with satellite lines by about 73%. No significant changes in the fat content, fatty acids composition, and acid value of irradiated almonds were observed. However, the amount of (alpha)tocopherols decreased from 292 to 175 mg/kg, whereas the conjugated dienes and trienes increased, K232 from 1.3 to 3 and K268 from 0.04 to 0.15, respectively, with the increasing of irradiation dose. The same was observed for total polyphenols in defatted almonds (1374 to 1520 mg/100 g), where in vitro antioxidant activity determined by ORAC and HORAC methods increased from 100 to 156 µmol TE/g and from 61 to 86 µmol GAE/g, respectively. The oxidative stability of oil decreased from 6 to 4 h at 120 °C and from 24.6 to 18.6 h at 100 °C (measured by Rancimat equipment). The kinetic parameters characterizing the oxidative stability of oil from 10 kGy irradiated almonds were studied before and after addition of different concentrations of ascorbyl palmitate as a synergist of tocopherols. Its effectiveness was concentration-dependent, and 0.75 mM ensured the same induction period as that of non-irradiated nut oil. Further enrichment with alpha-tocopherol in equimolar ratio with palmitate did not improve the oil stability. In conclusion, gamma irradiation is an appropriate method for the treatment of almonds without significant changes in fat content and fatty acids composition. The decreasing of oxidative stability after higher irradiation could be prevented by the addition of ascorbyl palmitate.


Subject(s)
Antioxidants , Prunus dulcis , Nuts , Fatty Acids , Electron Spin Resonance Spectroscopy , Tocopherols , Oxidative Stress , Gamma Rays
5.
Materials (Basel) ; 15(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36234253

ABSTRACT

CuFeS2/TiO2 nanocomposite has been prepared by a simple, low-cost mechanochemical route to assess its visible-light-driven photocatalytic efficiency in Methyl Orange azo dye decolorization. The structural and microstructural characterization was studied using X-ray diffraction and high-resolution transmission electron microscopy. The presence of both components in the composite and a partial anatase-to-rutile phase transformation was proven by X-ray diffraction. Both components exhibit crystallite size below 10 nm. The crystallite size of both phases in the range of 10-20 nm was found and confirmed by TEM. Surface and morphological properties were characterized by scanning electron microscopy and nitrogen adsorption measurement. Scanning electron microscopy has shown that the nanoparticles are agglomerated into larger grains. The specific surface area of the nanocomposite was determined to be 21.2 m2·g-1. Optical properties using UV-Vis and photoluminescence spectroscopy were also investigated. CuFeS2/TiO2 nanocomposite exhibits strong absorption with the determined optical band gap 2.75 eV. Electron paramagnetic resonance analysis has found two types of paramagnetic ions in the nanocomposite. Mössbauer spectra showed the existence of antiferromagnetic and paramagnetic spin structure in the nanocomposite. The CuFeS2/TiO2 nanocomposite showed the highest discoloration activity with a MO conversion of ~ 74% after 120 min irradiation. This study has shown the possibility to prepare nanocomposite material with enhanced photocatalytic activity of decoloration of MO in the visible range by an environmentally friendly manner.

6.
Nanomaterials (Basel) ; 11(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34947572

ABSTRACT

Yttrium-doped barium cerate (BCY15) was used as an anode ceramic matrix for synthesis of the Ni-based cermet anode with application in proton-conducting solid oxide fuel cells (pSOFC). The hydrazine wet-chemical synthesis was developed as an alternative low-cost energy-efficient route that promotes 'in situ' introduction of metallic Ni particles in the BCY15 matrix. The focus of this study is a detailed comparative characterization of the nickel state in the Ni/BCY15 cermets obtained in two types of medium, aqueous and anhydrous ethylene glycol environment, performed by a combination of XRD, N2 physisorption, SEM, EPR, XPS, and electrochemical impedance spectroscopy. Obtained results on the effect of the working medium show that ethylene glycol ensures active Ni cermet preparation with well-dispersed nanoscale metal Ni particles and provides a strong interaction between hydrazine-originating metallic Ni and cerium from the BCY15 matrix. The metallic Ni phase in the pSOFC anode is more stable during reoxidation compared to the Ni cermet prepared by the commercial mechanical mixing procedure. These factors contribute toward improvement of the anode's electrochemical performance in pSOFC, enhanced stability, and a lower degradation rate during operation.

7.
Folia Med (Plovdiv) ; 63(3): 372-376, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34196152

ABSTRACT

INTRODUCTION: Antibacterial photodynamic therapy is a promising treatment modality in the anti-infective therapy of numerous oral diseases. It involves photo activation of a reactive substance (dye), thus releasing reactive oxygen species (ROS-radicals) which are highly destructive to the bacterial cell. However, thorough investigation of radical production properties of different dyes is not common in literature. AIM: The aim of this study was to investigate and evaluate oxygen radical-producing potential of two commonly used photoactive dyes in the context of antibacterial photodynamic therapy. MATERIALS AND METHODS: The radical-producing properties of two commonly used dyes for photodynamic therapy in oral medicine, methylene blue and indocyanine green, irradiated under laser irradiation are investigated using electron paramagnetic resonance (EPR) spectroscopy. The detection of reactive oxygen species is performed with "spin-trapping" technique. RESULTS: The selected photoactive dyes showed promising yields of reactive oxygen species (ROS) in aqueous solutions. The comparative analysis of the results deemed methylene blue as the more productive photoactive agent. CONCLUSIONS: By employing the spin-trapping technique, this study indicates EPR-spectroscopy as a promising method of relative quantification of reactive oxygen species released by the photodynamic reaction in aqueous solutions.


Subject(s)
Photochemotherapy , Anti-Bacterial Agents , Coloring Agents , Electron Spin Resonance Spectroscopy , Indocyanine Green , Lasers , Methylene Blue , Reactive Oxygen Species
8.
J Radiat Res ; 56(3): 405-12, 2015 May.
Article in English | MEDLINE | ID: mdl-25480828

ABSTRACT

The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [µm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Heavy Ions , Radiometry/methods , Spectrophotometry, Ultraviolet/methods , Sucrose/chemistry , Sucrose/radiation effects , Dose-Response Relationship, Radiation , Free Radicals/chemistry , Free Radicals/radiation effects , Materials Testing , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 63(4): 875-8, 2006 Mar 13.
Article in English | MEDLINE | ID: mdl-16495124

ABSTRACT

Several types of laboratory glasses such as: "Jena", "Rasotherm", "Thüring" as well as window and windscreen glasses were studied by the method of EPR spectroscopy as possible emergency radiation dosimeters for gamma-ray irradiation. The most appropriate values of modulation amplitude and microwave power were found to obtain best sensitivity for the measured signals. Dose measurements have shown a linear dependence between the EPR signal intensity of radiation created defects in glasses and applied dose in the dose range 50-500 Gy. "Thüring" glass was found to be the most sensitive sample to radiation. The magnitude of window glass absorbed dose was evaluated as the difference between the intensity of its EPR signal recorded after irradiation and the background signal, obtained after thermal relaxation of the former.


Subject(s)
Electron Spin Resonance Spectroscopy , Gamma Rays , Glass/radiation effects , Dose-Response Relationship, Radiation , Glass/chemistry , Radiometry
SELECTION OF CITATIONS
SEARCH DETAIL
...