Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Hypertens ; 44(7): 595-600, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-35787727

ABSTRACT

OBJECTIVE: Despite significant improvements in interventional vascular aneurysm repair procedures and intensive care patient management, there has been no significant decrease in mortality due to ruptured abdominal aortic aneurysm. Oxidative stress is known to play a key role in secondary organ damage due to infrarenal aortic clamping. The aim of this study was to examine the potential protective effect of the alpha-2 adrenergic receptor agonist dexmedetomidine (DMT) on aortic occlusion-induced lung injury. METHODS: Thirty Sprague Dawley rats were allocated into control, ischemia-reperfusion (IR), and IR+DMT groups randomly. Vascular clamps were attached to the abdominal aorta in the IR and IR+DMT groups. Two-hour reperfusion was established 1 h after ischemia. The IR+DMT group received a single intraperitoneal 100 µg dose of DMT 30 min before infrarenal abdominal aortic clamping. RESULTS: IR due to aortic occlusion led to apoptosis, widespread inflammation, alveolar septal wall thickening due to bleeding and vascular congestion were observed in both types I and II pneumocytes. Malondialdehyde levels increased while glutathione decreased. However, DMT was found to lower apoptotic pneumocytes, alveolar-septal thickness, hemorrhage, vascular congestion, and malondialdehyde levels, while glutathione levels in lung tissue increased. CONCLUSIONS: This study is the first to address the effects of DMT on the lung in a ruptured abdominal aortic aneurysm model. Our findings suggest that the alpha-2 adrenergic receptor agonist DMT reduces oxidative stress and apoptosis, thus protecting against aortic occlusion-induced pulmonary injury.


Subject(s)
Aortic Aneurysm, Abdominal , Dexmedetomidine , Reperfusion Injury , Adrenergic Agonists , Alveolar Epithelial Cells , Animals , Aorta, Abdominal , Apoptosis , Glutathione , Inflammation , Malondialdehyde , Rats , Rats, Sprague-Dawley
2.
Eur J Med Res ; 17: 14, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22676276

ABSTRACT

BACKGROUND: The role of multiorgan damage in the mortality caused by ischemic limb injury is still not clarified. The objective of this study was to examine the potential protective effects of hyperbaric oxygen (HBO) and iloprost (IL) therapy on lung damage induced by limb ischemia/reperfusion injury in a rabbit model, using both biochemical and histopathological aspects. METHODS: Forty New Zealand white rabbits were randomly allocated into one of five study groups: HBO group (single session of HBO treatment); IL group (25 ng/kg/min infusion of IL); HBO + IL group (both HBO and IL); Control group (0.9% saline only); and a sham group. Acute hind limb ischemia-reperfusion was established by clamping the abdominal aorta for 1 h. HBO treatment and IL infusion were administrated during 60 min of ischemia and 60 min of reperfusion period. Blood pH, partial pressure of oxygen, partial pressure of carbon dioxide and levels of bicarbonate, sodium, potassium, creatine kinase, lactate dehydrogenase, and tumor necrosis factor alpha were determined at the end of the reperfusion period. Malondialdehyde was measured in the plasma and lung as an indicator of free radicals. After sacrifice, left lungs were removed and histopathological examination determined the degree of lung injury. RESULTS: In the control group, blood partial pressure of oxygen and bicarbonate levels were significantly lower and creatine kinase, lactate dehydrogenase, malondialdehyde and tumor necrosis factor-α levels were significantly higher than those of the HBO group, IL group, HBO + IL group and sham group. Similarly, the malondialdehyde levels in the lung tissue and plasma levels were significantly lower in the treatment groups compared with the control group. The extent of lung injury according to the histological findings was significantly higher in the control group. CONCLUSIONS: These results suggest that both HBO and IL therapies and their combination might be effectively used in the prevention of lung injury after ischemia/reperfusion injury of the lower extremities.


Subject(s)
Hyperbaric Oxygenation , Iloprost/administration & dosage , Lung Injury , Reperfusion Injury , Animals , Aorta, Abdominal/injuries , Hydrogen-Ion Concentration , Lung Injury/pathology , Lung Injury/prevention & control , Oxygen/administration & dosage , Rabbits , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...