Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioinformatics ; 40(Supplement_1): i11-i19, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940154

ABSTRACT

MOTIVATION: Wikipedia is a vital open educational resource in computational biology. The quality of computational biology coverage in English-language Wikipedia has improved steadily in recent years. However, there is an increasingly large 'knowledge gap' between computational biology resources in English-language Wikipedia, and Wikipedias in non-English languages. Reducing this knowledge gap by providing educational resources in non-English languages would reduce language barriers which disadvantage non-native English speaking learners across multiple dimensions in computational biology. RESULTS: Here, we provide a comprehensive assessment of computational biology coverage in Spanish-language Wikipedia, the second most accessed Wikipedia worldwide. Using Spanish-language Wikipedia as a case study, we generate quantitative and qualitative data before and after a targeted educational event, specifically, a Spanish-focused student editing competition. Our data demonstrates how such events and activities can narrow the knowledge gap between English and non-English educational resources, by improving existing articles and creating new articles. Finally, based on our analysis, we suggest ways to prioritize future initiatives to improve open educational resources in other languages. AVAILABILITY AND IMPLEMENTATION: Scripts for data analysis are available at: https://github.com/ISCBWikiTeam/spanish.


Subject(s)
Computational Biology , Computational Biology/methods , Humans , Language , Internet
2.
Bioinform Adv ; 3(1): vbad050, 2023.
Article in English | MEDLINE | ID: mdl-37123454

ABSTRACT

Motivation: Alternative splicing, as an essential regulatory mechanism in normal mammalian cells, is frequently disturbed in cancer and other diseases. Switches in the expression of most dominant alternative isoforms can alter protein interaction networks of associated genes giving rise to disease and disease progression. Here, we present CanIsoNet, a database to view, browse and search isoform switching events in diseases. CanIsoNet is the first webserver that incorporates isoform expression data with STRING interaction networks and ClinVar annotations to predict the pathogenic impact of isoform switching events in various diseases. Results: Data in CanIsoNet can be browsed by disease or searched by genes or isoforms in annotation-rich data tables. Various annotations for 11 811 isoforms and 14 357 unique isoform switching events across 31 different disease types are available. The network density score for each disease-specific isoform, PFAM domain IDs of disrupted interactions, domain structure visualization of transcripts and expression data of switched isoforms for each sample is given. Additionally, the genes annotated in ClinVar are highlighted in interactive interaction networks. Availability and implementation: CanIsoNet is freely available at https://www.caniso.net. The source codes can be found under a Creative Common License at https://github.com/kahramanlab/CanIsoNet_Web. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
Eur Urol Focus ; 9(5): 751-759, 2023 09.
Article in English | MEDLINE | ID: mdl-36933996

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors and antiangiogenic agents are used for first-line treatment of advanced papillary renal cell carcinoma (pRCC) but pRCC response rates to these therapies are low. OBJECTIVE: To generate and characterise a functional ex vivo model to identify novel treatment options in advanced pRCC. DESIGN, SETTING, AND PARTICIPANTS: We established patient-derived cell cultures (PDCs) from seven pRCC samples from patients and characterised them via genomic analysis and drug profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Comprehensive molecular characterisation in terms of copy number analysis and whole-exome sequencing confirmed the concordance of pRCC PDCs with the original tumours. We evaluated their sensitivity to novel drugs by generating drug scores for each PDC. RESULTS AND LIMITATIONS: PDCs confirmed pRCC-specific copy number variations such as gains in chromosomes 7, 16, and 17. Whole-exome sequencing revealed that PDCs retained mutations in pRCC-specific driver genes. We performed drug screening with 526 novel and oncological compounds. Whereas exposure to conventional drugs showed low efficacy, the results highlighted EGFR and BCL2 family inhibition as the most effective targets in our pRCC PDCs. CONCLUSIONS: High-throughput drug testing on newly established pRCC PDCs revealed that inhibition of EGFR and BCL2 family members could be a therapeutic strategy in pRCC. PATIENT SUMMARY: We used a new approach to generate patient-derived cells from a specific type of kidney cancer. We showed that these cells have the same genetic background as the original tumour and can be used as models to study novel treatment options for this type of kidney cancer.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , DNA Copy Number Variations , ErbB Receptors/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics
4.
F1000Res ; 112022.
Article in English | MEDLINE | ID: mdl-35136586

ABSTRACT

The Regional Student Group Turkey (RSG-Turkey) is officially associated with the International Society for Computational Biology (ISCB) Student Council (SC). At the RSG-Turkey, we aim to contribute to the early-career researchers in computational biology and bioinformatics fields by providing opportunities for improving their academic and technical skills in the field. Over the last ten years, we have built a well-known student-driven academic society in Turkey that organizes numerous events every year and continues to grow with over 650 current members. Celebrating the 10th anniversary of RSG-Turkey, in this communication, we share our experiences, five main lessons we learned, and the steps to establish a long-standing academic community: having a clear mission, building a robust structure, effective communication, turning challenges into opportunities, and building collaborations. We believe that our experiences can help students and academics establish long-standing communities in fast-developing areas like bioinformatics.


Subject(s)
Computational Biology , Students , Communication , Computational Biology/education , Humans , Research Personnel , Turkey
5.
Turk J Biol ; 46(6): 458-464, 2022.
Article in English | MEDLINE | ID: mdl-37529793

ABSTRACT

Majority of 37 human aminoacyl tRNA synthetases have been incriminated in diverse, mostly recessive, genetic diseases. In accordance with this, we uncovered a novel homozygous valyl-tRNA synthetase 1 (VARS1) gene variant, leading to p.T1068M mutation. As in the previously reported VARS1 mutations, the affected individual harboring p.T1068M was experiencing a neurodevelopmental disorder with intractable seizures, psychomotor retardation, and microcephaly. To link this phenotypic outcome with the observed genotype, we structurally modeled human VARS1 and interpreted p.T1068M within the spatial distribution of previously reported VARS1 variants. As a result, we uncovered that p.T1068M is clustered with three other pathogenic mutations in a 15 amino acid long stretch of the VARS1 anticodon-binding domain. While forming a helix-turn-helix motif within the anticodon-binding domain, this stretch harbors one-fourth of the reported VARS1 mutations. Here, we propose that these clustered mutations can destabilize the interactions between the anticodon-binding and the tRNA synthetase domains and thus hindering the optimal enzymatic activity of VARS1. We expect that the depiction of this mutation cluster will pave the way for the development of drugs, capable of alleviating the functional impact of these mutations.

6.
Front Mol Biosci ; 8: 726902, 2021.
Article in English | MEDLINE | ID: mdl-34888349

ABSTRACT

Alternative splicing is an essential regulatory mechanism for gene expression in mammalian cells contributing to protein, cellular, and species diversity. In cancer, alternative splicing is frequently disturbed, leading to changes in the expression of alternatively spliced protein isoforms. Advances in sequencing technologies and analysis methods led to new insights into the extent and functional impact of disturbed alternative splicing events. In this review, we give a brief overview of the molecular mechanisms driving alternative splicing, highlight the function of alternative splicing in healthy tissues and describe how alternative splicing is disrupted in cancer. We summarize current available computational tools for analyzing differential transcript usage, isoform switching events, and the pathogenic impact of cancer-specific splicing events. Finally, the strategies of three recent pan-cancer studies on isoform switching events are compared. Their methodological similarities and discrepancies are highlighted and lessons learned from the comparison are listed. We hope that our assessment will lead to new and more robust methods for cancer-specific transcript detection and help to produce more accurate functional impact predictions of isoform switching events.

7.
Front Mol Biosci ; 8: 658906, 2021.
Article in English | MEDLINE | ID: mdl-34195226

ABSTRACT

Owing to its clinical significance, modulation of functionally relevant amino acids in protein-protein complexes has attracted a great deal of attention. To this end, many approaches have been proposed to predict the partner-selecting amino acid positions in evolutionarily close complexes. These approaches can be grouped into sequence-based machine learning and structure-based energy-driven methods. In this work, we assessed these methods' ability to map the specificity-determining positions of Axl, a receptor tyrosine kinase involved in cancer progression and immune system diseases. For sequence-based predictions, we used SDPpred, Multi-RELIEF, and Sequence Harmony. For structure-based predictions, we utilized HADDOCK refinement and molecular dynamics simulations. As a result, we observed that (i) sequence-based methods overpredict partner-selecting residues of Axl and that (ii) combining Multi-RELIEF with HADDOCK-based predictions provides the key Axl residues, covered by the extensive molecular dynamics simulations. Expanding on these results, we propose that a sequence-structure-based approach is necessary to determine specificity-determining positions of Axl, which can guide the development of therapeutic molecules to combat Axl misregulation.

8.
ACS Omega ; 6(2): 1254-1265, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33490784

ABSTRACT

In all living organisms, protein kinases regulate various cell signaling events through phosphorylation. The phosphorylation occurs upon transferring an ATP's terminal phosphate to a target residue. Because of the central role of protein kinases in several proliferative pathways, point mutations occurring within the kinase's ATP-binding site can lead to a constitutively active enzyme, and ultimately, to cancer. A select set of these point mutations can also make the enzyme drug resistant toward the available kinase inhibitors. Because of technical and economical limitations, rapid experimental exploration of the impact of these mutations remains to be a challenge. This underscores the importance of kinase-ligand binding affinity prediction tools that are poised to measure the efficacy of inhibitors in the presence of kinase mutations. To this end, here, we compare the performances of six web-based scoring tools (DSX-ONLINE, KDEEP, HADDOCK2.2, PDBePISA, Pose&Rank, and PRODIGY-LIG) in assessing the impact of kinase mutations on their interactions with their inhibitors. This assessment is carried out on a new structure-based BINDKIN benchmark we compiled. BINDKIN contains wild-type and mutant structure pairs of kinase-inhibitor complexes, together with their corresponding experimental binding affinities (in the form of IC50, K d, and K i). The performance of various web servers over BINDKIN shows that they cannot predict the binding affinities (ΔGs) of wild-type and mutant cases directly. Still, they could catch whether a mutation improves or worsens the ligand binding (ΔΔGs) where the highest Pearson's R correlation coefficient is reached by DSX-ONLINE over the K i dataset. When homology models are used instead of K i-associated crystal structures, DSX-ONLINE loses its predictive capacity. These results highlight that there is room to improve the available scoring functions to estimate the impact of protein kinase point mutations on inhibitor binding. The BINDKIN benchmark with all related results is freely accessible online (https://github.com/CSB-KaracaLab/BINDKIN).

9.
Sci Rep ; 10(1): 14453, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879328

ABSTRACT

Under normal conditions, cells of almost all tissue types express the same predominant canonical transcript isoform at each gene locus. In cancer, however, splicing regulation is often disturbed, leading to cancer-specific switches in the most dominant transcripts (MDT). To address the pathogenic impact of these switches, we have analyzed isoform-specific protein-protein interaction disruptions in 1,209 cancer samples covering 27 different cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International Cancer Genomics Consortium (ICGC). Our study revealed large variations in the number of cancer-specific MDT (cMDT) with the highest frequency in cancers of female reproductive organs. Interestingly, in contrast to the mutational load, cancers arising from the same primary tissue had a similar number of cMDT. Some cMDT were found in 100% of all samples in a cancer type, making them candidates for diagnostic biomarkers. cMDT tend to be located at densely populated network regions where they disrupted protein interactions in the proximity of pathogenic cancer genes. A gene ontology enrichment analysis showed that these disruptions occurred mostly in protein translation and RNA splicing pathways. Interestingly, samples with mutations in the spliceosomal complex tend to have higher number of cMDT, while other transcript expressions correlated with mutations in non-coding splice-site and promoter regions of their genes. This work demonstrates for the first time the large extent of cancer-specific alterations in alternative splicing for 27 different cancer types. It highlights distinct and common patterns of cMDT and suggests novel pathogenic transcripts and markers that induce large network disruptions in cancers.


Subject(s)
Genomics , Neoplasm Proteins/genetics , Neoplasms/genetics , Protein Isoforms/genetics , Alternative Splicing/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genitalia, Female/metabolism , Genitalia, Female/pathology , Humans , Male , Mutation , Neoplasms/pathology , RNA Splicing/genetics , Signal Transduction/genetics , Spliceosomes/genetics , Transcription, Genetic/genetics
10.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-31508204

ABSTRACT

Regional Student Groups (RSGs) of the International Society for Computational Biology Student Council (ISCB-SC) have been instrumental to connect computational biologists globally and to create more awareness about bioinformatics education. This article highlights the initiatives carried out by the RSGs both nationally and internationally to strengthen the present and future of the bioinformatics community. Moreover, we discuss the future directions the organization will take and the challenges to advance further in the ISCB-SC main mission: "Nurture the new generation of computational biologists".


Subject(s)
Computational Biology , Students , Humans , Interprofessional Relations
11.
J Hum Genet ; 64(10): 1051-1054, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31388109

ABSTRACT

Rapid progress has recently been made in the elucidation of the genetic basis of childhood-onset inherited generalized dystonia (IGD) due to the implementation of genomic sequencing methodologies. We identified four patients with childhood-onset IGD harboring novel disease-causing mutations in lysine-specific histone methyltransferase 2B gene (KMT2B) by whole-exome sequencing. The main focus of this paper is to gain novel pathophysiological insights through understanding the molecular consequences of these mutations.The disease course is mostly progressive, evolving from lower limbs into generalized dystonia, which could be associated with dysarthria, dysphonia, intellectual disability, orofacial dyskinesia, and sometimes distinct dysmorphic facial features. In two patients, motor performances improved after bilateral implantation of deep brain stimulation in the globus pallidus internus (GPi-DBS). Pharmacotherapy with trihexyphenidyl reduced dystonia in two patients.We discovered three novel KMT2B mutations. Our analyses revealed that the mutation in patient 1 (c.7463 A > G, p.Y2488C) is localized in the highly conserved FYRC domain of KMT2B. This mutation holds the potential to alter the inter-domain FYR interactions, which could lead to KMT2B instability. The mutations in patients 2 and 3 (c.3602dupC, p.M1202Dfs*22; c.4229delA, p.Q1410Rfs*12) lead to predicted unstable transcripts, likely to be subject to degradation by non-sense mediated decay.Childhood-onset progressive dystonia with orofacial involvement is one of the main clinical manifestations of KMT2B mutations. In all, 26% (18/69) of the reported cases have T2 signal alterations of the globus pallidus internus, mostly at a younger age. Anticholinergic medication and GPi-DBS are promising treatment options and shall be considered early.An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
J Hum Genet ; 64(8): 803-813, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31165786

ABSTRACT

Rapid progress has recently been made in the elucidation of the genetic basis of childhood-onset inherited generalized dystonia (IGD) due to the implementation of genomic sequencing methodologies. We identified four patients with childhood-onset IGD harboring novel disease-causing mutations in lysine-specific histone methyltransferase 2B gene (KMT2B) by whole-exome sequencing. The main focus of this paper is to gain novel pathophysiological insights through understanding the molecular consequences of these mutations. The disease course is mostly progressive, evolving from lower limbs into generalized dystonia, which could be associated with dysarthria, dysphonia, intellectual disability, orofacial dyskinesia, and sometimes distinct dysmorphic facial features. In two patients, motor performances improved after bilateral implantation of deep brain stimulation in the globus pallidus internus (GPi-DBS). Pharmacotherapy with trihexyphenidyl reduced dystonia in two patients. We discovered three novel KMT2B mutations. Our analyses revealed that the mutation in patient 1 (c.7463A > G, p.Y2488C) is localized in the highly conserved FYRC domain of KMT2B. This mutation holds the potential to alter the inter-domain FYR interactions, which could lead to KMT2B instability. The mutations in patients 2 and 3 (c.3596_3697insC, p.M1202Dfs*22; c.4229delA, p.Q1410Rfs*12) lead to predicted unstable transcripts, likely to be subject to degradation by non-sense-mediated decay. Childhood-onset progressive dystonia with orofacial involvement is one of the main clinical manifestations of KMT2B mutations. In all, 26% (18/69) of the reported cases have T2 signal alterations of the globus pallidus internus, mostly at a younger age. Anticholinergic medication and GPi-DBS are promising treatment options and shall be considered early.


Subject(s)
Dystonia/diagnosis , Dystonia/etiology , Genetic Association Studies , Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Mutation , Phenotype , Age of Onset , Alleles , Child , Child, Preschool , Disease Progression , Dystonia/therapy , Female , Genetic Association Studies/methods , Genomics/methods , Genotype , Histone-Lysine N-Methyltransferase/chemistry , Humans , Male , Models, Molecular , Neuroimaging/methods , Pedigree , Protein Conformation , Structure-Activity Relationship , Symptom Assessment , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...