Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031228

ABSTRACT

This study developed an innovative biosensor strategy for the sensitive and selective detection of canine mammary tumor biomarkers, cancer antigen 15-3 (CA 15-3) and mucin 1 (MUC-1), integrating green silver nanoparticles (GAgNPs) with machine learning (ML) algorithms to achieve high diagnostic accuracy and potential for noninvasive early detection. The GAgNPs-enhanced electrochemical biosensor demonstrated selective detection of CA 15-3 in serum and MUC-1 in tissue homogenates, with limits of detection (LODs) of 0.07 and 0.11 U mL-1, respectively. The nanoscale dimensions of the GAgNPs endowed them with electrochemically active surface areas, facilitating sensitive biomarker detection. Experimental studies targeted CA 15-3 and MUC-1 biomarkers in clinical samples, and the biosensor exhibited ease of use and good selectivity. Furthermore, ML algorithms were employed to analyze the electrochemical data and predict biomarker concentrations, enhancing the diagnostic accuracy. The Random Forest algorithm achieved 98% accuracy in tumor presence prediction, while an Artificial Neural Network attained 76% accuracy in CA 15-3-based tumor grade classification. The integration of ML techniques with the GAgNPs-based biosensor offers a promising approach for noninvasive, accurate, and early detection of canine mammary tumors, potentially revolutionizing veterinary diagnostics. This multilayered strategy, combining eco-friendly nanomaterials, electrochemical sensing, and ML algorithms, holds significant potential for advancing both biomedical research and clinical practice in the field of canine mammary tumor diagnostics.

2.
Dalton Trans ; 53(29): 12223-12233, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38976003

ABSTRACT

Maintaining a high specific energy without losing cycling stability is the focus of the supercapacitor field. In this study, carbon nanofibers including europium oxide nanoparticles (CNF/Eu2O3) have been synthesized in the presence of thiourea via a simple approach and applied for the first time as an electrode for SCs. The CNF/Eu2O3-1 electrode doped with nitrogen and sulfur heteroatoms possessed a favorable specific capacitance of 183.2 F g-1, a specific energy of 9.15 W h kg-1, and an excellent capacitance retention of 94.8% even after 10 000 cycles at 1 A g-1. Such excellent performance is ascribed to the surface functionalities, high surface area, and good interaction of Eu2O3 with CNFs. This strategy will provide guidance for other rare element-based electrodes in the field of energy storage.

3.
Talanta ; 278: 126507, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968654

ABSTRACT

Electrochemical immunosensors, surpassing conventional diagnostics, exhibit significant potential for cancer biomarker detection. However, achieving a delicate balance between signal sensitivity and operational stability, especially at the heterostructure interface, is crucial for practical immunosensors. Herein, porous carbon (PC) integration with Ti3C2Tx-MXene (MX) and gold nanoparticles (Au NPs) constructs a versatile immunosensing platform for detecting extracellular matrix protein-1 (ECM1), a breast cancer-associated biomarker. The inclusion of PC provided robust structural support, enhancing electrolytic diffusion with an expansive surface area while synergistically facilitating charge transfer with Ti3C2Tx. The biosensor optimized with 1.0 mg PC demonstrates a robust electrochemical redox response to the surface-bound thionine (th) redox probe, utilizing an inhibition-based strategy for ECM1 detection. The robust antibody-antigen interactions across the PC-integrated Ti3C2Tx-Au NPs platform (MX-Au-C-1) enabled robust ECM1 detection within 0.1-7.5 nM, with a low limit of detection (LOD) of 0.012 nM. The constructed biosensor shows improved operational stability with a 98.6 % current retention over 1 h, surpassing MXene-integrated (MX-Au) and pristine Au NPs (63.2 % and 44.3 %, respectively) electrodes. Moreover, the successful adaptation of the artificial neural network (ANN) model for predictive analysis of the generated DPV data further validates the accuracy of the biosensor, promising its future application in AI-powered remote health monitoring.

4.
Colloids Surf B Biointerfaces ; 225: 113278, 2023 May.
Article in English | MEDLINE | ID: mdl-37003246

ABSTRACT

The development of theranostic nanocarriers with synergistic drug combinations has received considerable attention due to their improved pharmaceutical activity. Herein, we reported an investigation about the in-vitro anticancer activity of ceranib-2 (Cer), betulinic acid (BA), and the combination of betulinic acid and ceranib-2 (BA-Cer) against PC-3 prostate cancer cells. For this purpose, first we designed a suitable nanocarrier using a novel Zn:MnO2 nanocomposite (NCs) and gallic acid (GA)-polylactic acid (PLA)-Alginate polymeric shell with nanoscale particle size and good stability. Chemical statements, morphology, and physicochemical properties of the nanocarrier have been illuminated with advanced characterization techniques. According to the transmission electron microscopy (TEM) results, Zn:MnO2 NCs had a spherical and monodispersed morphology with a 2.03 ± 0.67 nm diameter. Moreover, vibrating-sample magnetometer (VSM) results showed that Zn:MnO2 had paramagnetic properties with a saturation magnetization (Ms) value of 1.136 emu/g. Additionally, the in-vitro cytotoxic effects of the single and binary drugs loaded Zn:MnO2-doped polymeric nanocarriers against PC-3 prostate cancer cells were investigated. According to the results, there was no significant cytotoxic effect of free BA and Cer against PC-3 prostate cancer cells. However, BA/Zn:MnO2@GA-PLA-Alginate NCs, BA-Cer/Zn:MnO2 @GA-PLA-Alginate NCs and free BA-Cer had IC50 values of 6.498, 7.351, and 18.571 µg/mL, respectively. Consequently, BA-Cer/Zn:MnO2@GA-PLA-Alginate is a nanocarrier with good stability, enhanced drug loading and release capacity for hydrophobic drugs, as well as being used as both imaging and treatment agent due to its magnetic properties. Furthermore, BA and Cer drug combination showed great promise in prostate cancer therapy which is known to be resulted high drug resistance. We strongly believed that this work could lead to an investigation of the molecular mechanisms of BA-mediated cancer theapy.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Betulinic Acid , Manganese Compounds/pharmacology , Oxides , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polymers , Polyesters , Prostatic Neoplasms/drug therapy , Zinc
5.
Food Chem ; 417: 135918, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36940511

ABSTRACT

Ascorbic acid (AA) is a highly water-soluble organic chemical compound and plays a significant role in human metabolism. For the purpose of food quality monitoring, this study focuses on the development of a smartphone-integrated colorimetric and non-enzymatic electrochemical Corylus Colurna (CC) extract-Cu2O nanoparticles (Cu2O NPs) biosensor to detect AA in real food samples. The characterization of the CC-Cu2O NPs was determined using SEM, SEM/EDX, HRTEM, XRD, FTIR, XPS, TGA, and DSC. The CC-Cu2O NPs are cubic in shape with an approximate size of 10 nm. According to electrochemical results, the oxidation of AA at the modified electrode exhibited a LOD of 27.92 nmolL-1 in a wide concentration range of 0.55-22 mmolL-1. The fabricated digital CC-Cu2O NPs sensor successfully detected AA in food samples. This strategy provides a nanoplatform to determine the detection of AA in food samples.


Subject(s)
Biosensing Techniques , Corylus , Metal Nanoparticles , Humans , Ascorbic Acid , Biosensing Techniques/methods , Electrochemical Techniques/methods , Nanoparticles/chemistry , Smartphone , Metal Nanoparticles/chemistry
6.
Cellulose (Lond) ; 29(7): 3871-3887, 2022.
Article in English | MEDLINE | ID: mdl-35342231

ABSTRACT

Currently, researchers are focusing on the development of nano-additive preservatives during the worldwide COVID-19 pandemic. This research aimed to constitute a small sized preservative nano-formulation which emerges from the biopolymer carboxymethyl cellulose (a green stabilizing agent) and hydromagnesite stromatolite (a fossilized natural additive). In this study, we investigated the optimization of the experimental design of carboxymethyl cellulose/hydromagnesite stromatolite (CMC/HS) bio-nanocomposites using a green and one-step sonochemical method at room temperature. In addition, we constructed a mathematical model which relates the intrinsic viscosity with all operating variables, and we carried out statistical error analysis to assess the validity of the proposed model. The characterization and chemical functional groups of CMC/HS bio-nanocomposites were determined by different advanced techniques such as SEM, HRTEM, DLS, FTIR, XRD, and BET. The challenge test was used to show the preservative efficacy of CMC/HS bio-nanocomposites against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltrazolium bromide (MTT) assay was performed on L929 cells to evaluate the in vitro cytotoxicity of CMC/HS bio-nanocomposites. According to the results, we showed that the synthesized CMC/HS bio-nanocomposites have no cytototoxic effects on L929 fibroblast cells and could be considered to be an alternative green nano-additive preservative against pathogenic microorganisms.

7.
Polym Bull (Berl) ; 79(9): 7363-7389, 2022.
Article in English | MEDLINE | ID: mdl-34413556

ABSTRACT

Current trends in scientific studies focus on the development of smartphone-based biosensors via green nanoparticle for clinical diagnosis, food, and environmental monitoring. In this study, we developed a novel portable smartphone-based biosensor via green dendrimer-coated matcha extract/silver nanoparticles (ME-Ag NPs) enriched with polyphenol for detecting hydrogen peroxide (H2O2). Also, we investigated the biological evaluation of the nanostructure as a safe preservative for use in biomedical applications. Ag NPs were prepared using a green sonochemical method and were characterized to determine surface and chemical properties by different techniques such as scanning electron microscopy-energy-dispersive X-ray, transmission electron microscope, Fourier transform infrared spectroscopy, atomic force microscopy, X-ray diffraction, and Brunauer-Emmett-Teller. Furthermore, antimicrobial and antifungal properties of ME-Ag NPs were investigated against pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aureginosa, Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The experimental sensor methodology was based on the detection of H2O2 by analysis of images of novel silver nanostructure-coated papers and processing of color histograms with a RGB (red-green-blue) analyzer software. Consequently, the smartphone-based biosensor exhibited high sensitivity with detection limits of 0.82 µM response time of 5 s. The smartphone-based biosensor via ME-Ag NPs provided a rapid and selective detection of H2O2.

8.
Food Chem ; 372: 131267, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34638065

ABSTRACT

In this study, reduced graphene oxide (rGO) was prepared using a green ultrasonic microwave assisted method and investigated rGO based non-enzymatic electrochemical sensor for detecting a synthetic fungicide as a propamocarb (PM) pesticide. The rGO-based sensor exhibited rapid response within 1 min, low detection limit of 0.6 µM and wide linear range of (1-5) µM with a high sensitivity of 101.1 µAµM-1 cm-2 for PM. Besides this, the sensor detected the propamocarb pesticide on the real cucumber sample with high sensitivity in the concentration range of (1-5) µM within a 1-minute cycle. The sensor is highly selective against propamocarb pesticide. The prepared non-enzymatic electrochemical sensor exhibited high sensitivity, high selectivity, reproducibility, and rapid response.


Subject(s)
Fungicides, Industrial , Graphite , Pesticides , Carbamates , Electrochemical Techniques , Electrodes , Reproducibility of Results
9.
J Integr Med ; 19(5): 451-459, 2021 09.
Article in English | MEDLINE | ID: mdl-34417154

ABSTRACT

OBJECTIVE: Chemotherapeutic drugs, such as cisplatin (CP), which are associated with oxidative stress and apoptosis, may adversely affect the reproductive system. This study tests whether administration of propolis and nano-propolis (NP) can alleviate oxidative stress and apoptosis in rats with testicular damage induced by CP. METHODS: In this study, polymeric nanoparticles including propolis were synthesized with a green sonication method and characterized using Fourier transform-infrared spectroscopy, Brunauer-Emmett-Teller, and wet scanning transmission electron microscopy techniques. In total, 56 rats were divided into the following seven groups: control, CP, propolis, NP-10, CP + propolis, CP + NP-10, and CP + NP-30. Propolis (100 mg/kg), NP-10 (10 mg/kg), and NP-30 (30 mg/kg) treatments were administered by gavage daily for 21 d, and CP (3 mg/kg) was administered intraperitoneally in a single dose. After the experiment, oxidative stress parameters, namely, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT), and apoptotic pathways including B cell leukemia/lymphoma-2 protein (Bcl-2) and Bcl-2-associated X protein (Bax) were measured in testicular tissues. Furthermore, sperm quality and weights of the testis, epididymis, right cauda epididymis, seminal vesicles and prostate were evaluated. RESULTS: Propolis and NP (especially NP-30) were able to preserve oxidative balance (decreased MDA levels and increased GSH, CAT, and GPx activities) and activate apoptotic pathways (decreased Bax and increased Bcl-2) in the testes of CP-treated rats. Sperm motility in the control, CP, and CP + NP-30 groups were 60%, 48.75%, and 78%, respectively (P < 0.001). Especially, NP-30 application completely corrected the deterioration in sperm features induced by CP. CONCLUSION: The results show that propolis and NP treatments mitigated the side effects of CP on spermatogenic activity, antioxidant situation, and apoptosis in rats.


Subject(s)
Propolis , Testis , Animals , Antioxidants/metabolism , Cisplatin/toxicity , Male , Oxidative Stress , Rats , Rats, Sprague-Dawley , Sperm Motility
10.
Int J Biol Macromol ; 183: 1047-1057, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33984379

ABSTRACT

In this study, an optimized method was developed for the synthesis of biological macromolecule blend supported iron oxide nanoparticles (IO NPs). The nanostructure was composed of binary polymer blends of konjac gum (KG) and xanthan gum (XG). The synthesized KG/XG@IO NPs were characterized by SEM, EDX, HRTEM, FTIR, XRD, XPS, zeta potential, DLS, TGA, and DSC. According to results, the KG/XG@IO NPs had a spherical shape with an average diameter range of ~40 nm using Scherrer's equation and Williamson-Hall equation. The results of TGA and DSC analysis confirmed that the KG/XG@IO NPs maintained good thermal stability. Our motivation was to determine the effect of the biopolymer blend matrix on the morphology, size, stability, and thermal properties of the green KG/XG@IO NPs. Furthermore, the effects of sonication process time (10-30 min), mass ratio of biological macromolecule blend (KG/XG) (1:1, 1:2, and 1:4), and amplitude frequency (5%-40%) on the rheological parameters of NPs were investigated to optimize the sonochemical process. From optimization analysis, we concluded that the sonication had a role in the size distribution and the formation of nanoparticles with the optimum mixture ratio of binary biopolymer matrix as it provided long-term stability.


Subject(s)
Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Plant Gums/chemistry , Polysaccharides, Bacterial/chemistry , Biopolymers/chemistry
11.
Methods Mol Biol ; 2207: 199-220, 2021.
Article in English | MEDLINE | ID: mdl-33113138

ABSTRACT

Ceranib-2 is a recently discovered, poorly water-soluble potent ceramidase inhibitor, with the ability to suppress cancer cell proliferation and delay tumor growth. However, its poor water solubility and weak cellular bioavailability hinder its use as a therapeutic agent for cancer. PEGylated rosin esters are an excellent platform as a natural polymer for drug delivery applications, especially for controlling drug release due to their degradability, biocompatibility, capability to improve solubility, and pharmacokinetics of potent drugs. In this study, stable aqueous amphiphilic submicron-sized PEG400-rosin ester-ceranib-2 (PREC-2) particles, ranging between 100 and 350 nm in a 1:1 mixture, were successfully synthesized by solvent evaporation mediated by sonication.Conclusion: Stable aqueous PEGylated rosin ester nanocarriers might present a significant solution to improve solubility, pharmacokinetic, and bioavailability of ceranib-2, and hold promises for use as an anticancer adjacent drug after further investigations.


Subject(s)
Antineoplastic Agents , Drug Carriers , Neoplasms , Polyethylene Glycols/chemistry , Quinolones , Resins, Plant/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HeLa Cells , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Quinolones/chemistry , Quinolones/pharmacokinetics , Quinolones/pharmacology
12.
Biosens Bioelectron ; 166: 112439, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32862843

ABSTRACT

Interfacial charge-carrier recombination is a bottle-neck issue restricting photoelectrochemical biosensors advancement in the wearable clinical electronics. In this study, we propose a simple approach to construct a highly efficient photoactive heterojunction capable of functioning as an active substrate in PEC biosensing of CD44 proteins. Taking the advantage of high photocatalytic activity of BiVO4, and biocompatible yet conductive 2D-Ti3C2Tx nanosheets, a workable heterojunction was constructed between in-situ formed TiO2 from the partially oxidized Ti3C2Tx and lysine functionalized BiVO4 (TiO2/MX-BiVO4). The interfacial arrangement was ideal for promoting fast charge transfer from photo-excited BiVO4 and TiO2 to Ti3C2Tx, constructing an energy level-cascade that permits minimal charge-carrier recombination besides robust photocatalytic redox activity. The PEC biosensor relies on the ligand-protein interaction, where hyaluronic acid was directly immobilized over TiO2/MX-BiVO4 based on the interactions between carboxyl of lysine and amino moieties of hyaluronic acid. The PEC biosensor response depends on the inhibition in the measured photo-oxidation current of mediator species, i.e., ascorbic acid after the addition of CD44 proteins. The superior photo-activity, and robust heterojunction arrangement, produced a sensitive signal capable of recognizing CD44 in the wide concentration window of 2.2 × 10-4 ng mL-1 to 3.2 ng mL-1 with a low-detection limit of 1.4 × 10-2 pg mL-1. The strong interaction between lysine functionalized BiVO4 and hyaluronic acid enabled biosensor to exhibit robust antifouling characteristics towards similar proteins such as PSA and NSE. The quantification of CD44 protein from real-blood serum samples further confirmed the biosensor's reliability for clinical application.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Reproducibility of Results , Titanium
13.
Plants (Basel) ; 9(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825574

ABSTRACT

This study was performed to determine the effects of chitosan-coated nano-propolis (NP), which is synthesized via a green sonochemical method, and propolis on the side effects of cisplatin (CP), which is a widely used drug in the treatment of cancer. For this aim, 56 rats were divided into seven groups, balancing their body weights (BW). The study was designed as Control, CP (3 mg/kg BW at single dose of CP as intraperitoneal, ip), Propolis (100 mg/kg BW per day of propolis by gavage), NP-10 (10 mg/kg BW of NP per day by gavage), CP + Propolis (3 mg/kg BW of CP and 100 mg/kg BW of propolis), CP + NP-10 (3 mg/kg CP and 10 mg/kg BW of NP), and CP + NP-30 (3 mg/kg BW of CP and 30 mg/kg BW of NP). Propolis and NP (especially NP-30) were preserved via biochemical parameters, oxidative stress, and activation of apoptotic pathways (anti-apoptotic protein: Bcl-2 and pro-apoptotic protein: Bax) in liver and kidney tissues in the toxicity induced by CP. The NP were more effective than propolis at a dose of 30 mg/kg BW and had the potential to ameliorate CP's negative effects while overcoming serious side effects such as liver and kidney damage.

14.
Sensors (Basel) ; 20(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881686

ABSTRACT

Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2-5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody-antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pg·mL-1 to 50 ng.mL-1 with signal sensitivity achievable up to 0.15 pg·mL-1. The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.


Subject(s)
Biomarkers/analysis , Biosensing Techniques , Electrochemical Techniques , Graphite/chemistry , Nanospheres/chemistry , Tungsten/chemistry , Animals , Cattle , Copper , Procalcitonin/analysis , Serum Albumin, Bovine/chemistry
15.
Int J Biol Macromol ; 141: 1118-1127, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31476393

ABSTRACT

Novel Guar Gum (GG) and polyethylene glycol (PEG) polymer blends with rosin glycerol ester (RE) nanoparticle was synthesized under ultrasonic irradiation at different composition ratios (1:1, 1:2, 1:4, 2:1, and 4:1). The intrinsic viscosities of the nanoparticles were investigated using ultrasound irradiation to determine the miscibility of the blends in solution as affected by salt, sonication time, temperature, and pH. The intrinsic viscosities of the nanosystems were compared with five different models, including Huggins, Kraemer, Tanglertpaibul-Rao, Higiro, and Rao. The Tanglertpaibul-Rao was the best model and the intrinsic viscosities of 138,27, 142,94 and 163,29 dl/g were reported for GG-PEG/RE (1:1,1:2,1:4), respectively. The viscosity results reveal that the blend containing 1:2 (GG-PEG/RE) was an optimum miscible blend. The miscibility behaviour of the polymeric nanoparticles was investigated using the voluminosity (VE), shape factor (υ), creaming index (CI) parameter, and the Krigbaum and Wall parameter (Δb), which account for the intermolecular interactions. When compared to the intrinsic viscosity results of the nanoparticles, the miscibility-improving effect of sub-300 nm GG-PEG/RE nanoparticles is clearly proven due to the ultrasonic effect. Scanning transmission electron microscopy (STEM) and Fourier transformed infrared (FTIR) spectroscopy were used for characterization of the polymeric nanoparticles.


Subject(s)
Esters/chemistry , Galactans/chemistry , Glycerol/chemistry , Mannans/chemistry , Nanoparticles/chemistry , Plant Gums/chemistry , Polyethylene Glycols/chemistry , Sonication , Kinetics , Viscosity
16.
Int J Biol Macromol ; 137: 821-828, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31265850

ABSTRACT

Chitosan (Chi) and gelatine (Gel) polymer blends with ZnO nanoparticles loaded on silica were synthesized through a simple solution method under ultrasonic irradiation at different concentration ratios (5:3, 1:3 and 3:5). The viscosity characteristics of the nanostructure were investigated by using ultrasound irradiation to determine the behaviour of macromolecules in solution. Rheological characterization of the nanoparticles was determined. The experimental viscosity of the nanosystems was calculated with five different models including Huggins, Kraemer, Tanglertpaibul-Rao, Higiro and Rao. The results showed that the Huggins model was the best model for intrinsic viscosity determination of nanostructures at different concentration ratios and at sonicated or non-sonicated conditions. The voluminosity (VE) and the shape factor (υ) were calculated for the nanosystems. The Krigbaum and Wall parameter (Δb) along with the Chee parameter (µ) were calculated to understand the miscibility behaviour. The miscibility criterion was slightly affected by the collapse and cavitation. The intermolecular interactions occurring between polymers were investigated by comparing the experimental and ideal intrinsic viscosity. Characterization of the nanostructures was carried out via Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques.


Subject(s)
Biocompatible Materials/chemistry , Gelatin/chemistry , Nanoparticles/chemistry , Rheology , Silicon Dioxide/chemistry , Zinc Oxide/chemistry
17.
Int J Biol Macromol ; 121: 1194-1202, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30342942

ABSTRACT

We aimed to test the adsorption of the methylene blue (MB) on HSEPCGUM as a dye and also to test the obtained ternary biocomposite substance (HSEPCGUM-MB) on wound healing. Hollow silica spheres (HSS) are used in the pharmaceutical and biochemical field, because of low toxic, highly biocompatible and mechanically stable by large surface areas. HSS was obtained by mechanochemistry method. The obtained HSS was treated with epichlorohydrin to carry out an epoxidation process (HSEPC). Then, HSEPC was functionalized by treatment with gum arabic (HSEPCGUM). MB was adsorbed onto HSEPCGUM and the adsorption maximum capacity of HSEPCGUM (Xmax) was obtained 333 mg g-1. For in vitro studies, according to the cytotoxicity test results, ternary biocomposite substance (HSEPCGUM-MB) was studied at non-cytotoxic concentrations 10, 50 and 100 µg/ml and wound closure was found as 55% (100 µg/ml) as compared to control.


Subject(s)
Gum Arabic/chemistry , Gum Arabic/pharmacology , Methylene Blue/chemistry , Silicon Dioxide/chemistry , Water Pollutants, Chemical/chemistry , Wound Healing/drug effects , 3T3 Cells , Adsorption , Animals , Methylene Blue/isolation & purification , Methylene Blue/toxicity , Mice , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/toxicity
18.
Ultrason Sonochem ; 38: 720-725, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27614583

ABSTRACT

In this study, a new bio-nanocomposite was prepared and characterized with a focus on the formation of hexagonal ZnO and orthorhombic zinc silicate (Zn2SiO3(OH)2) phases under ultrasonic irradiation. Chitosan/sepiolite/ZnO and chitosan/silica/ZnO bio-nanocomposites were synthesized using a simple solution method in which extreme physical and chemical conditions created by cavitation within the chitosan solution allowed for the transformation of aqueous Zn(OH)2 to crystallized ZnO and Zn2SiO3(OH)2 in room temperature. Both the loading of sepiolite and silica with the zinc precursor significantly influenced the morphology and crystalline structure of the product, however, different zinc compounds were observed. Sepiolite was exfoliated, resulting in a fine, even colloidal solution through ultrasonic dispersion. Exfoliation of sepiolite nanofibers led to the homogeneous dispersion of Zinc in the form of Zn(OH)2 in chitosan matrix. When the same procedure was conducted using the silica component, a formation of ZnO and Zn2SiO3(OH)2 was observed, components that were not observed when the procedure was conducted using sepiolite. The average crystalline size of ZnO was calculated as 36nm for ZnO. In addition, the quantities of crystalline and the ZnO phase volume was determined as 15%. Through zone of inhibition, the silica nanocomposite was discovered to have antibacterial activity. In contrast, the sepiolite compound did not exhibit these properties. We thus hypothesize that HO radicals, formed during ultrasonic irradiation trigger the formation of a silicate ion (SiO32-) and formation of ZnO and Zn2SiO3(OH)2 species in chitosan/silica/ZnO bio-nanocomposite, which causes to exhibit these antibacterial properties against Gram-negative E. coli. Chemical characterization and dispersion of the structure of the ZnO and Zn2SiO3(OH)2 phases were done using X-ray diffraction (XRD) and scanning electron microscopy techniques (SEM) with EDAX and X-ray photoelectron spectroscopy (XPS).


Subject(s)
Chitosan/chemistry , Escherichia coli/drug effects , Magnesium Silicates/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Ultrasonic Waves , Zinc Oxide/pharmacology , Zinc Oxide/chemistry
19.
J Hazard Mater ; 184(1-3): 164-169, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20832937

ABSTRACT

The adsorption of Reactive Blue 21 (RB21) and Reactive Red 195 (RR195) onto clinoptilolite type natural zeolite (ZEC) has been investigated at 298.15K. The uptake of single and binary reactive dyes from aqueous solutions has been determined by UV-vis spectroscopy. Two mono-component (RB21 and RR195) and binary component (RB21 with RR195, and RR195 with RB21), isotherms were determined. The mono-component Langmuir isotherm model was applied to experimental data and the isotherm constants were calculated for RB21 and RR195 dyes. The monolayer coverage capacities of clinoptilolite for RB21 and RR195 dyes in single solution system were found as 9.652 and 3.186 mg/g, respectively. Equilibrium adsorption for binary systems was analyzed by using the extended Langmuir models. The rate of kinetic processes of single and binary dye systems onto clinoptilolite was described by using two kinetics adsorption models. The pseudo-second-order model was the best choice among the kinetic models to describe the adsorption behaviour of single and binary dyes onto clinoptilolite.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Metalloporphyrins/chemistry , Naphthalenesulfonates/chemistry , Zeolites/chemistry , Adsorption , Color , Kinetics , Solutions , Spectrophotometry, Ultraviolet , Thermodynamics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...