Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
EMBO J ; 41(8): e109633, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35253240

ABSTRACT

Ageing is a complex process with common and distinct features across tissues. Unveiling the underlying processes driving ageing in individual tissues is indispensable to decipher the mechanisms of organismal longevity. Caenorhabditis elegans is a well-established model organism that has spearheaded ageing research with the discovery of numerous genetic pathways controlling its lifespan. However, it remains challenging to dissect the ageing of worm tissues due to the limited description of tissue pathology and access to tissue-specific molecular changes during ageing. In this study, we isolated cells from five major tissues in young and old worms and profiled the age-induced transcriptomic changes within these tissues. We observed a striking diversity of ageing across tissues and identified different sets of longevity regulators therein. In addition, we found novel tissue-specific factors, including irx-1 and myrf-2, which control the integrity of the intestinal barrier and sarcomere structure during ageing respectively. This study demonstrates the complexity of ageing across worm tissues and highlights the power of tissue-specific transcriptomic profiling during ageing, which can serve as a resource to the field.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Aging/genetics , Aging/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Longevity/genetics , Transcriptome
2.
Methods ; 201: 5-14, 2022 05.
Article in English | MEDLINE | ID: mdl-34454016

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious, acute respiratory disease caused mainly by person-to-person transmission of the coronavirus SARS-CoV-2. Its emergence has caused a world-wide acute health crisis, intensified by the challenge of reliably identifying individuals likely to transmit the disease. Diagnosis is hampered by the many unknowns surrounding this disease, including those relating to infectious viral burden. This uncertainty is exacerbated by disagreement surrounding the clinical relevance of molecular testing using reverse transcription quantitative PCR (RT-qPCR) for the presence of viral RNA, most often based on the reporting of quantification cycles (Cq), which is also termed the cycle threshold (Ct) or crossing point (Cp). Despite it being common knowledge that Cqs are relative values varying according to a wide range of different parameters, there have been efforts to use them as though they were absolute units, with Cqs below an arbitrarily determined value, deemed to signify a positive result and those above, a negative one. Our results investigated the effects of a range of common variables on Cq values. These data include a detailed analysis of the effect of different carrier molecules on RNA extraction. The impact of sample matrix of buccal swabs and saliva on RNA extraction efficiency was demonstrated in RT-qPCR and the impact of potentially inhibiting compounds in urine along with bile salts were investigated in RT-digital PCR (RT-dPCR). The latter studies were performed such that the impact on the RT step could be separated from the PCR step. In this way, the RT was shown to be more susceptible to inhibitors than the PCR. Together, these studies demonstrate that the consequent variability of test results makes subjective Cq cut-off values unsuitable for the identification of infectious individuals. We also discuss the importance of using reliable control materials for accurate quantification and highlight the substantial role played by dPCR as a method for their development.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Science ; 338(6113): 1472-6, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23239738

ABSTRACT

Although the gonad primarily functions in procreation, it also affects animal life span. Here, we show that removal of the Caenorhabditis elegans germ line triggers a switch in the regulatory state of the organism to promote longevity, co-opting components involved in larval developmental timing circuits. These components include the DAF-12 steroid receptor, which is involved in the larval stage two-to-stage three (L2-L3) transition and up-regulates members of the let-7 microRNA (miRNA) family. The miRNAs target an early larval nuclear factor lin-14 and akt-1/kinase, thereby stimulating DAF-16/FOXO signaling to extend life. Our studies suggest that metazoan life span is coupled to the gonad through elements of a developmental timer.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Gonads/metabolism , Longevity/physiology , MicroRNAs/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Receptors, Steroid/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors , Gene Expression Regulation, Developmental , Germ Cells/metabolism , Larva/genetics , Larva/growth & development , Larva/physiology , Longevity/genetics , MicroRNAs/genetics , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL