Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 83(15): 8020-8025, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29786438

ABSTRACT

The study of boron-mediated reactions in organic synthesis and reactions of organoboron compounds is greatly facilitated by the use of 11B NMR. However, the identification and characterization of reaction intermediates in often complex systems is far from trivial, as 11B NMR does not provide any detailed structural information. Greater insight into the structures present in such systems can be obtained by using DFT chemical shift calculations to support or exclude proposed reaction intermediates. In this article, we report a rapid and accessible approach to the calculation of 11B NMR shifts that is applicable to a wide range of organoboron compounds.

2.
Chem Sci ; 9(4): 1058-1072, 2018 Jan 28.
Article in English | MEDLINE | ID: mdl-29675153

ABSTRACT

The generally accepted monoacyloxyboron mechanism of boron-catalysed direct amidation is brought into question in this study, and new alternatives are proposed. We have carried out a detailed investigation of boron-catalysed amidation reactions, through study of the interaction between amines/carboxylic acids and borinic acids, boronic acids and boric acid, and have isolated and characterised by NMR/X-ray crystallography many of the likely intermediates present in catalytic amidation reactions. Rapid reaction between amines and boron compounds was observed in all cases, and it is proposed that such boron-nitrogen interactions are highly likely to take place in catalytic amidation reactions. These studies also clearly show that borinic acids are not competent catalysts for amidation, as they either form unreactive amino-carboxylate complexes, or undergo protodeboronation to give boronic acids. It therefore seems that at least three free coordination sites on the boron atom are necessary for amidation catalysis to occur. However, these observations are not consistent with the currently accepted 'mechanism' for boron-mediated amidation reactions involving nucleophilic attack of an amine onto a monomeric acyloxyboron intermediate, and as a result of our observations and theoretical modelling, alternative proposed mechanisms are presented for boron-mediated amidation reactions. These are likely to proceed via the formation of a dimeric B-X-B motif (X = O, NR), which is uniquely able to provide activation of the carboxylic acid, whilst orchestrating the delivery of the amine nucleophile to the carbonyl group. Quantum mechanical calculations of catalytic cycles at the B3LYP+D3/Def2-TZVPP level (solvent = CH2Cl2) support the proposal of several closely related potential pathways for amidation, all of which are likely to be lower in energy than the currently accepted mechanism.

3.
Chemistry ; 24(27): 7033-7043, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29505683

ABSTRACT

Amidation of unprotected amino acids has been investigated using a variety of 'classical" coupling reagents, stoichiometric or catalytic group(IV) metal salts, and boron Lewis acids. The scope of the reaction was explored through the attempted synthesis of amides derived from twenty natural, and several unnatural, amino acids, as well as a wide selection of primary and secondary amines. The study also examines the synthesis of medicinally relevant compounds, and the scalability of this direct amidation approach. Finally, we provide insight into the chemoselectivity observed in these reactions.


Subject(s)
Amino Acids/chemistry , Lewis Acids/chemistry , Amines/chemistry , Borates/chemistry , Catalysis , Green Chemistry Technology
4.
RSC Adv ; 8(40): 22617-22624, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-35539729

ABSTRACT

A sustainable synthetic procedure to convert furfural hydrazones into functionalised phthalimides was developed. The reaction was performed in a microwave using a hydrophilic ionic liquid, [bmim][Cl], as the solvent which could be readily recovered by a simple extraction. The ionic liquid was successfully recycled with no significant loss in product yields.

5.
Chem Commun (Camb) ; 52(57): 8846-9, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27346362

ABSTRACT

A commercially available borate ester, B(OCH2CF3)3, can be used to achieve protecting-group free direct amidation of α-amino acids with a range of amines in cyclopentyl methyl ether. The method can be applied to the synthesis of medicinally relevant compounds, and can be scaled up to obtain gram quantities of products.

6.
Org Biomol Chem ; 13(44): 10888-94, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26366853

ABSTRACT

The use of B(OCH2CF3)3 for mediating direct amidation reactions of a wide range of pharmaceutically relevant carboxylic acids and amines is described, including numerous heterocycle-containing examples. An initial screen of solvents for the direct amidation reaction suggested that cyclopentyl methyl ether, a solvent with a very good safety profile suitable for use over a wide temperature range, was an excellent replacement for the previously used solvent acetonitrile. Under these conditions amides could be prepared from 18 of the 21 carboxylic acids and 18 of the 21 amines examined. Further optimisation of one of the low yielding amidation reactions (36% yield) via a design of experiments approach enabled an 84% yield of the amide to be obtained.


Subject(s)
Amides/chemistry , Amines/chemistry , Borates/chemistry , Carboxylic Acids/chemistry , Cyclopentanes/chemistry , Methyl Ethers/chemistry , Aminopyridines/chemistry , Catalysis , Esterification , Phenylacetates/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...