Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Phys ; 39(1): 1-3, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24600165
2.
J Med Phys ; 34(3): 117-21, 2009 Jul.
Article in English | MEDLINE | ID: mdl-20098556

ABSTRACT

Building on a long history of providing physical measurements and standards for medical X rays and nuclear medicine radionuclides, the laboratory has expanded its focus to better support the extensive use of medical physics in the United States today, providing confidence in key results needed for drug and device development and marketing, therapy planning and efficacy and disease screening. In particular, to support more quantitative medical imaging, this laboratory has implemented a program to provide key measurement infrastructure to support radiation-based imaging through developing standard, benchmark phantoms, which contain radioactive sources calibrated to national measurement standards, to allow more quantitative imaging through traceable instrument calibration for clinical trials or patient management. Working closely with colleagues at the National Institutes of Health, Rensselaer Polytechnic Institute, the Food and Drug Administration and Cornell University, this laboratory has taken the initial steps in developing phantoms, and the protocols to use them, for more accurate calibration of positron emission tomography (PET) or single-photon emission computed tomography (SPECT) cameras, including recently standardizing (68)Ge. X-ray measurements of the laboratory's recently developed small, resilient and inexpensive length standard phantom have shown the potential usefulness of such a "pocket" phantom for patient-based calibration of computed tomography (alone or with PET) systems. The ability to calibrate diagnostic imaging tools in a way that is traceable to national standards will lead to a more quantitative approach; both physician and patient benefit from increased accuracy in treatment planning, as well as increased safety for the patient.

3.
Appl Radiat Isot ; 56(1-2): 379-85, 2002.
Article in English | MEDLINE | ID: mdl-11842804

ABSTRACT

This paper summarizes the methods currently applied by the National Institute of Standards and Technology (NIST) for the preparation and verification of environmental and radiobioaasay performance evaluation materials for the traceability testing of low-level radioactivity measurements. The evaluation of measurement quality of the all participants indicated that over 90% of the intercomparison results complied with ANSI N42.22 and/or HPS N13.30 standards. Overall, the differences from the NIST values observed for all test nuclides and matrices are less than -7%, with a typical measurement precision better than 10% (1 s). The dependency of measurement quality on the test radionuclides, sample matrices, and radiochemical methods is identified by statistical analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...