Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762116

ABSTRACT

Duchenne muscular dystrophy (DMD), caused by loss-of-function mutations in the dystrophin gene, results in progressive muscle weakness and early fatality. Impaired autophagy is one of the cellular hallmarks of DMD, contributing to the disease progression. Molecular mechanisms underlying the inhibition of autophagy in DMD are not well understood. In the current study, the DMD mouse model mdx is used for the investigation of signaling pathways leading to suppression of autophagy. Mammalian target of rapamycin complex 1 (mTORC1) is found to be hyperactive in the DMD muscles, accompanying muscle weakness and autophagy impairment. Surprisingly, Akt, a well-known upstream regulator of mTORC1, is not responsible for mTORC1 activation or the dystrophic muscle phenotypes. Instead, leucyl-tRNA synthetase (LeuRS) is found to be overexpressed in mdx muscles compared with the wild type. LeuRS is known to activate mTORC1 in a noncanonical mechanism that involves interaction with RagD, an activator of mTORC1. Disrupting LeuRS interaction with RagD by the small-molecule inhibitor BC-LI-0186 reduces mTORC1 activity, restores autophagy, and ameliorates myofiber damage in the mdx muscles. Furthermore, inhibition of LeuRS by BC-LI-0186 improves dystrophic muscle strength in an autophagy-dependent manner. Taken together, our findings uncover a noncanonical function of the housekeeping protein LeuRS as a potential therapeutic target in the treatment of DMD.

SELECTION OF CITATIONS
SEARCH DETAIL
...