Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050575

ABSTRACT

Recently, a novel approach in the field of Industry 4.0 factory operations was proposed for a new generation of automated guided vehicles (AGVs) that are connected to a virtualized programmable logic controller (PLC) via a 5G multi-access edge-computing (MEC) platform to enable remote control. However, this approach faces a critical challenge as the 5G network may encounter communication disruptions that can lead to AGV deviations and, with this, potential safety risks and workplace issues. To mitigate this problem, several works have proposed the use of fixed-horizon forecasting techniques based on deep-learning models that can anticipate AGV trajectory deviations and take corrective maneuvers accordingly. However, these methods have limited prediction flexibility for the AGV operator and are not robust against network instability. To address this limitation, this study proposes a novel approach based on multi-horizon forecasting techniques to predict the deviation of remotely controlled AGVs. As its primary contribution, the work presents two new versions of the state-of-the-art transformer architecture that are well-suited to the multi-horizon prediction problem. We conduct a comprehensive comparison between the proposed models and traditional deep-learning models, such as the long short-term memory (LSTM) neural network, to evaluate the performance and capabilities of the proposed models in relation to traditional deep-learning architectures. The results indicate that (i) the transformer-based models outperform LSTM in both multi-horizon and fixed-horizon scenarios, (ii) the prediction accuracy at a specific time-step of the best multi-horizon forecasting model is very close to that obtained by the best fixed-horizon forecasting model at the same step, (iii) models that use a time-sequence structure in their inputs tend to perform better in multi-horizon scenarios compared to their fixed horizon counterparts and other multi-horizon models that do not consider a time topology in their inputs, and (iv) our experiments showed that the proposed models can perform inference within the required time constraints for real-time decision making.

2.
Sensors (Basel) ; 22(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35684725

ABSTRACT

Network Digital Twin (NDT) is a new technology that builds on the concept of Digital Twins (DT) to create a virtual representation of the physical objects of a telecommunications network. NDT bridges physical and virtual spaces to enable coordination and synchronization of physical parts while eliminating the need to directly interact with them. There is broad consensus that Artificial Intelligence (AI) and Machine Learning (ML) are among the key enablers to this technology. In this work, we present B5GEMINI, which is an NDT for 5G and beyond networks that makes an extensive use of AI and ML. First, we present the infrastructural and architectural components that support B5GEMINI. Next, we explore four paradigmatic applications where AI/ML can leverage B5GEMINI for building new AI-powered applications. In addition, we identify the main components of the AI ecosystem of B5GEMINI, outlining emerging research trends and identifying the open challenges that must be solved along the way. Finally, we present two relevant use cases in the application of NDTs with an extensive use of ML. The first use case lays in the cybersecurity domain and proposes the use of B5GEMINI to facilitate the design of ML-based attack detectors and the second addresses the design of energy efficient ML components and introduces the modular development of NDTs adopting the Digital Map concept as a novelty.


Subject(s)
Artificial Intelligence , Ecosystem , Machine Learning , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...