Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026724

ABSTRACT

Background: Eosinophilic esophagitis (EoE) is a chronic T helper type 2 (Th2)-associated inflammatory disorder triggered by food allergens, resulting in esophageal dysfunction through edema, fibrosis, and tissue remodeling. The role of epithelial remodeling in EoE pathogenesis is critical but not fully understood. Objective: To investigate the role of epithelial IKKß/NFκB signaling in EoE pathogenesis using a mouse model with conditional Ikk ß knockout in esophageal epithelial cells ( Ikk ß EEC-KO ). Methods: EoE was induced in Ikkß EEC-KO mice through skin sensitization with MC903/Ovalbumin (OVA) followed by intraesophageal OVA challenge. Histological and transcriptional analyses were performed to assess EoE features. Single-cell RNA sequencing (scRNA-seq) was used to profile esophageal mucosal cell populations and gene expression changes. Results: Ikkß EEC-KO /EoE mice exhibited hallmark EoE features, including eosinophil infiltration, intraepithelial eosinophils, microabscesses, basal cell hyperplasia, and lamina propria remodeling. RNA-seq revealed significant alterations in IKKß/NFκB signaling pathways, with decreased expression of RELA and increased expression of IKKß negative regulators. scRNA- seq analyses identified disrupted epithelial differentiation and barrier integrity, alongside increased type 2 immune responses and peptidase activity. Conclusion: Our study demonstrates that loss of epithelial IKKß signaling exacerbates EoE pathogenesis, highlighting the critical role of this pathway in maintaining epithelial homeostasis and preventing allergic inflammation. The Ikkß EEC-KO /EoE mouse model closely mirrors human EoE, providing a valuable tool for investigating disease mechanisms and therapeutic targets. This model can facilitate the development of strategies to prevent chronic inflammation and tissue remodeling in EoE. Key Messages: Critical Role of Epithelial IKKß/NFκB Signaling: Loss of this signaling exacerbates EoE, causing eosinophil infiltration, basal cell hyperplasia, and tissue remodeling, highlighting its importance in esophageal health.Molecular Insights and Therapeutic Targets: scRNA-seq identified disrupted epithelial differentiation, barrier integrity, and enhanced type 2 immune responses, suggesting potential therapeutic targets for EoE. Relevance of the Ikkß EEC-KO /EoE Mouse Model: This model replicates human EoE features, making it a valuable tool for studying EoE mechanisms and testing treatments, which can drive the development of effective therapies. Capsule Summary: This study reveals the crucial role of epithelial IKKß/NFκB signaling in EoE, providing insights into disease mechanisms and potential therapeutic targets, highly relevant for advancing clinical management of EoE.

3.
Res Sq ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766032

ABSTRACT

Prostate cancer (PCa) is the most common cancer diagnosed in men worldwide and the second leading cause of cancer-related deaths in US males in 2022. Prostate cancer also represents the second highest cancer mortality disparity between non-Hispanic blacks and whites. However, there is a relatively small number of prostate normal and cancer cell lines compared to other cancers. To identify the molecular basis of PCa progression, it is important to have prostate epithelial cell (PrEC) lines as karyotypically normal as possible. Our lab recently developed a novel methodology for the rapid and efficient immortalization of normal human PrEC that combines simultaneous CRISPR-directed inactivation of CDKN2A exon 2 (which directs expression of p16INK4A and p14ARF) and ectopic expression of an hTERT transgene. To optimize this methodology to generate immortalized lines with minimal genetic alterations, we sought to target exon 1α of the CDKN2A locus so that p16INK4A expression is ablated while p14ARF expression remains unaltered. Here we describe the establishment of two cell lines: one with the above-mentioned p16INK4A only loss, and a second line targeting both products in the CDKN2A locus. We characterize the potential lineage origin of these new cell lines along with our previously obtained clones, revealing distinct gene expression signatures. Based on the analyses of protein markers and RNA expression signatures, these cell lines are most closely related to a subpopulation of basal prostatic cells. Given the simplicity of this one-step methodology and the fact that it uses only the minimal genetic alterations necessary for immortalization, it should also be suitable for the establishment of cell lines from primary prostate tumor samples, an urgent need given the limited number of available prostate cancer cell lines.

4.
Cell Mol Gastroenterol Hepatol ; 18(1): 15-40, 2024.
Article in English | MEDLINE | ID: mdl-38452871

ABSTRACT

BACKGROUND & AIMS: Autophagy plays roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelial homeostasis. METHODS: We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histologic and biochemical analyses. We fluorescence-activated cell sorted esophageal basal cells based on fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID and then subjected these cells to transmission electron microscopy, image flow cytometry, three-dimensional organoid assays, RNA sequencing, and cell cycle analysis. Three-dimensional organoids were subjected to passaging, single-cell RNA sequencing, cell cycle analysis, and immunostaining. RESULTS: Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells under homeostatic conditions and also was associated with significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Esophageal basal cells with high AV level (Cyto-IDHigh) displayed limited organoid formation capability on initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-IDLow). RNA sequencing suggested increased autophagy in Cyto-IDHigh esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. Single-cell RNA sequencing of three-dimensional organoids generated by Cyto-IDLow and Cyto-IDHigh cells identified expansion of 3 cell populations and enrichment of G2/M-associated genes in the Cyto-IDHigh group. Ki67 expression was also increased in organoids generated by Cyto-IDHigh cells, including in basal cells localized beyond the outermost cell layer. CONCLUSIONS: Autophagy contributes to maintenance of the esophageal proliferation-differentiation gradient. Esophageal basal cells with high AV level exhibit limited proliferation and generate three-dimensional organoids with enhanced self-renewal capacity.


Subject(s)
Autophagy , Cell Proliferation , Homeostasis , Mice, Knockout , Organoids , Animals , Mice , Organoids/metabolism , Esophagus/pathology , Esophagus/cytology , Esophagus/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein 7/genetics , 4-Nitroquinoline-1-oxide , Cell Self Renewal , Esophageal Mucosa/pathology , Esophageal Mucosa/metabolism , Esophageal Mucosa/cytology , Single-Cell Analysis
6.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37781581

ABSTRACT

Background & Aims: Autophagy has been demonstrated to play roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelium under homeostatic conditions. Methods: We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histological and biochemical analyses. We FACS sorted esophageal basal cells based upon fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID, then subjected these cells to transmission electron microscopy, image flow cytometry, 3D organoid assays, RNA-Sequencing (RNA-Seq), and cell cycle analysis. 3D organoids were subjected to passaging, single cell (sc) RNA-Seq, cell cycle analysis, and immunostaining. Results: Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells. Esophageal basal cells with high AV level (Cyto-ID High ) displayed limited organoid formation capability upon initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-ID Low ). RNA-Seq suggested increased autophagy in Cyto- ID High esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. scRNA-Seq of 3D organoids generated by Cyto-ID Low and Cyto- ID High cells identified expansion of 3 cell populations, enrichment of G2/M-associated genes, and aberrant localization of cell cycle-associated genes beyond basal cell populations in the Cyto- ID High group. Ki67 expression was also increased in organoids generated by Cyto-ID High cells, including in cells beyond the basal cell layer. Squamous epithelial-specific autophagy inhibition induced significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Conclusions: High AV level identifies esophageal epithelium with limited proliferation and enhanced self-renewal capacity that contributes to maintenance of the esophageal proliferation- differentiation gradient in vivo .

7.
JCI Insight ; 8(19)2023 10 09.
Article in English | MEDLINE | ID: mdl-37672481

ABSTRACT

Eosinophilic esophagitis (EoE) is an esophageal immune-mediated disease characterized by eosinophilic inflammation and epithelial remodeling, including basal cell hyperplasia (BCH). Although BCH is known to correlate with disease severity and with persistent symptoms in patients in histological remission, the molecular processes driving BCH remain poorly defined. Here, we demonstrate that BCH is predominantly characterized by an expansion of nonproliferative suprabasal cells that are still committed to early differentiation. Furthermore, we discovered that suprabasal and superficial esophageal epithelial cells retain progenitor identity programs in EoE, evidenced by increased quiescent cell identity scoring and the enrichment of signaling pathways regulating stem cell pluripotency. Enrichment and trajectory analyses identified SOX2 and KLF5 as potential drivers of the increased quiescent identity and epithelial remodeling observed in EoE. Notably, these alterations were not observed in gastroesophageal reflux disease. These findings provide additional insights into the differentiation process in EoE and highlight the distinct characteristics of suprabasal and superficial esophageal epithelial cells in the disease.


Subject(s)
Eosinophilic Esophagitis , Humans , Eosinophilic Esophagitis/pathology , Hyperplasia/pathology , Epithelial Cells/metabolism
8.
Mol Cancer Res ; 21(10): 1017-1022, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37358557

ABSTRACT

DNA polymerase theta (Polθ, encoded by POLQ gene) plays an essential role in Polθ-mediated end-joining (TMEJ) of DNA double-strand breaks (DSB). Inhibition of Polθ is synthetic lethal in homologous recombination (HR)-deficient tumor cells. However, DSBs can be also repaired by PARP1 and RAD52-mediated mechanisms. Because leukemia cells accumulate spontaneous DSBs, we tested if simultaneous targeting of Polθ and PARP1 or RAD52 enhance the synthetic lethal effect in HR-deficient leukemia cells. Transformation potential of the oncogenes inducing BRCA1/2-deficiency (BCR-ABL1 and AML1-ETO) was severely limited in Polq-/-;Parp1-/- and Polq-/-;Rad52-/- cells when compared with single knockouts, which was associated with accumulation of DSBs. Small-molecule inhibitor of Polθ (Polθi) when combined with PARP or RAD52 inhibitors (PARPi, RAD52i) caused accumulation of DSBs and exerted increased effect against HR-deficient leukemia and myeloproliferative neoplasm cells. IMPLICATIONS: In conclusion, we show that PARPi or RAD52i might improve therapeutic effect of Polθi against HR-deficient leukemias.


Subject(s)
Leukemia , Synthetic Lethal Mutations , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , Homologous Recombination , Leukemia/genetics , DNA Repair , Rad52 DNA Repair and Recombination Protein/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , DNA Polymerase theta
9.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37131652

ABSTRACT

Eosinophilic esophagitis (EoE) is an esophageal immune-mediated disease characterized by eosinophilic inflammation and epithelial remodeling, including basal cell hyperplasia (BCH) and loss of differentiation. Although BCH correlates with disease severity and with persistent symptoms in patients in histological remission, the molecular processes driving BCH remain poorly defined. Here, we demonstrate that despite the presence of BCH in all EoE patients examined, no increase in basal cell proportion was observed by scRNA-seq. Instead, EoE patients exhibited a reduced pool of KRT15+ COL17A1+ quiescent cells, a modest increase in KI67+ dividing epibasal cells, a substantial increase in KRT13+ IVL+ suprabasal cells, and a loss of differentiated identity in superficial cells. Suprabasal and superficial cell populations demonstrated increased quiescent cell identity scoring in EoE with the enrichment of signaling pathways regulating pluripotency of stem cells. However, this was not paired with increased proliferation. Enrichment and trajectory analyses identified SOX2 and KLF5 as potential drivers of the increased quiescent identity and epithelial remodeling observed in EoE. Notably, these findings were not observed in GERD. Thus, our study demonstrates that BCH in EoE results from an expansion of non-proliferative cells that retain stem-like transcriptional programs while remaining committed to early differentiation.

10.
Front Allergy ; 4: 1086032, 2023.
Article in English | MEDLINE | ID: mdl-37064719

ABSTRACT

Introduction: Under homeostatic conditions, esophageal epithelium displays a proliferation/differentiation gradient that is generated as proliferative basal cells give rise to suprabasal cells then terminally differentiated superficial cells. This proliferation/differentiation gradient is often perturbed in esophageal pathologies. Basal cell hyperplasia may occur in patients with gastroesophageal reflux disease (GERD), a condition in which acid from the stomach enters the esophagus, or eosinophilic esophagitis (EoE), an emerging form of food allergy. While GERD is a primary risk factor for esophageal cancer, epidemiological data suggests that EoE patients do not develop esophageal cancer. Methods: In order to investigate the impact of EoE and esophageal cancer specifically on the cellular landscape of esophageal epithelium, we perform single cell RNA-sequencing in murine models of EoE and esophageal cancer, specifically esophageal squamous cell carcinoma (ESCC). We further evaluate modules of co-expressed genes in EoE- and ESCC-enriched epithelial cell clusters. Finally, we pair EoE and ESCC murine models to examine the functional relationship between these pathologies. Results: In mice with either EoE or ESCC, we find expansion of cell populations as compared to normal esophageal epithelium. In mice with EoE, we detect distinct expansion of 4 suprabasal populations coupled with depletion of 2 basal populations. By contrast, mice with ESCC display unique expansion of 2 basal populations and 1 suprabasal population, as well as depletion of 2 suprabasal populations. Senescence, glucocorticoid receptor signaling, and granulocyte-macrophage colony-stimulating factor pathways are associated with EoE-enriched clusters while pathways associated with cell proliferation and metabolism are identified in ESCC-enriched clusters. Finally, our in vivo data demonstrate that exposure to EoE inflammation limits tumor burden of esophageal carcinogenesis. Discussion: Our findings provide the first functional investigation of the relationship between EoE and esophageal cancer and suggest that esophageal epithelial remodeling events occurring in response to EoE inflammation may limit esophageal carcinogenesis. This investigation may have future implications for leveraging allergic inflammation-associated alterations in epithelial biology to prevent and/or treat esophageal cancer.

11.
Carcinogenesis ; 44(2): 182-195, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37014121

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive forms of human malignancy, often displaying limited therapeutic response. Here, we examine the non-steroidal anti-inflammatory drug diclofenac (DCF) as a novel therapeutic agent in ESCC using complementary in vitro and in vivo models. DCF selectively reduced viability of human ESCC cell lines TE11, KYSE150, and KYSE410 as compared with normal primary or immortalized esophageal keratinocytes. Apoptosis and altered cell cycle profiles were documented in DCF-treated TE11 and KYSE 150. In DCF-treated TE11, RNA-Sequencing identified differentially expressed genes and Ingenuity Pathway Analysis predicted alterations in pathways associated with cellular metabolism and p53 signaling. Downregulation of proteins associated with glycolysis was documented in DCF-treated TE11 and KYSE150. In response to DCF, TE11 cells further displayed reduced levels of ATP, pyruvate, and lactate. Evidence of mitochondrial depolarization and superoxide production was induced by DCF in TE11 and KYSE150. In DCF-treated TE11, the superoxide scavenger MitoTempo improved viability, supporting a role for mitochondrial reactive oxygen species in DCF-mediated toxicity. DCF treatment resulted in increased expression of p53 in TE11 and KYSE150. p53 was further identified as a mediator of DCF-mediated toxicity in TE11 as genetic depletion of p53 partially limited apoptosis in response to DCF. Consistent with the anticancer activity of DCF in vitro, the drug significantly decreased tumor burdene in syngeneic ESCC xenograft tumors and 4-nitroquinoline 1-oxide-mediated ESCC lesions in vivo. These preclinical findings identify DCF as an experimental therapeutic that should be explored further in ESCC.


Subject(s)
Antineoplastic Agents , Diclofenac , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line , Cell Line, Tumor , Cell Proliferation , Diclofenac/pharmacology , Diclofenac/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Superoxides/metabolism , Superoxides/pharmacology , Superoxides/therapeutic use , Tumor Burden , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
Blood Cancer J ; 13(1): 42, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959186

ABSTRACT

Deletion of ABL1 was detected in a cohort of hematologic malignancies carrying AML1-ETO and NUP98 fusion proteins. Abl1-/- murine hematopoietic cells transduced with AML1-ETO and NUP98-PMX1 gained proliferation advantage when compared to Abl1 + /+ counterparts. Conversely, overexpression and pharmacological stimulation of ABL1 kinase resulted in reduced proliferation. To pinpoint mechanisms facilitating the transformation of ABL1-deficient cells, Abl1 was knocked down in 32Dcl3-Abl1ko cells by CRISPR/Cas9 followed by the challenge of growth factor withdrawal. 32Dcl3-Abl1ko cells but not 32Dcl3-Abl1wt cells generated growth factor-independent clones. RNA-seq implicated PI3K signaling as one of the dominant mechanisms contributing to growth factor independence in 32Dcl3-Abl1ko cells. PI3K inhibitor buparlisib exerted selective activity against Lin-cKit+ NUP98-PMX1;Abl1-/- cells when compared to the Abl1 + /+ counterparts. Since the role of ABL1 in DNA damage response (DDR) is well established, we also tested the inhibitors of ATM (ATMi), ATR (ATRi) and DNA-PKcs (DNA-PKi). AML1-ETO;Abl1-/- and NUP98-PMX1;Abl1-/- cells were hypersensitive to DNA-PKi and ATRi, respectively, when compared to Abl1 + /+ counterparts. Moreover, ABL1 kinase inhibitor enhanced the sensitivity to PI3K, DNA-PKcs and ATR inhibitors. In conclusion, we showed that ABL1 kinase plays a tumor suppressor role in hematological malignancies induced by AML1-ETO and NUP98-PMX1 and modulates the response to PI3K and/or DDR inhibitors.


Subject(s)
Leukemia , Phosphatidylinositol 3-Kinases , Animals , Humans , Mice , Core Binding Factor Alpha 2 Subunit/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RUNX1 Translocation Partner 1 Protein/genetics , Proto-Oncogene Proteins c-abl/metabolism
13.
Nat Commun ; 13(1): 2167, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35443762

ABSTRACT

Although morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal squamous differentiation gradient, the molecular heterogeneity within cell types along this trajectory has yet to be classified at the single cell level. To address this knowledge gap, we perform single cell RNA-sequencing of 44,679 murine esophageal epithelial, to identify 11 distinct cell populations as well as pathways alterations along the basal-superficial axis and in each individual population. We evaluate the impact of aging upon esophageal epithelial cell populations and demonstrate age-associated mitochondrial dysfunction. We compare single cell transcriptomic profiles in 3D murine organoids and human esophageal biopsies with that of murine esophageal epithelium. Finally, we employ pseudotemporal trajectory analysis to develop a working model of cell fate determination in murine esophageal epithelium. These studies provide comprehensive molecular perspective on the cellular heterogeneity of murine esophageal epithelium in the context of homeostasis and aging.


Subject(s)
Esophageal Neoplasms , Transcriptome , Animals , Epithelial Cells , Epithelium/metabolism , Esophageal Neoplasms/pathology , Esophagus/pathology , Humans , Mice , Single-Cell Analysis , Transcriptome/genetics
14.
Cell Mol Gastroenterol Hepatol ; 13(5): 1449-1467, 2022.
Article in English | MEDLINE | ID: mdl-35108658

ABSTRACT

BACKGROUND & AIMS: Although basal cell hyperplasia is a histologic hallmark of eosinophilic esophagitis (EoE), little is known about the capabilities of epithelial renewal and differentiation in the EoE inflammatory milieu. In murine esophageal epithelium, there are self-renewing and slowly proliferating basal stem-like cells characterized by concurrent expression of CD73 (5'-nucleotidase ecto) and CD104 (integrin ß4). Here, we investigated CD73+CD104+ cells within the basal population of human esophageal epithelium and clarified the biological significance of these cells in the EoE epithelium. METHODS: We performed flow cytometry on esophageal biopsy samples from EoE and non-EoE patients to determine the quantity of CD73+CD104+ cells in the epithelium. Simulating the EoE milieu we stimulated primary patient-derived and immortalized cell line-derived esophageal organoids with interleukin (IL)4 and IL13 and analyzed by flow cytometry, immunohistochemistry, and quantitative reverse-transcription polymerase chain reaction. We performed single-cell RNA sequencing on primary organoids in the setting of IL13 stimulation and evaluated the CD73+CD104+ population. We performed fluorescent-activated cell sorting to purify CD73+CD104+ and CD73- CD104+ populations and seeded these groups in organoid culture to evaluate the organoid formation rate and organoid size. We used RNA interference to knock down CD73 in esophageal organoids to evaluate organoid formation rates and size. We evaluated the effects of signal transducer and activator of transcription 6 (STAT6) signaling inhibition by RNA interference, a STAT6 inhibitor, AS1517499, as well as the proton pump inhibitor omeprazole. RESULTS: EoE patients showed decreased epithelial CD73+CD104+ cell content. IL4 and IL13 stimulation depleted this population in 3-dimensional organoids with a recapitulation of basal cell hyperplasia as corroborated by single-cell RNA sequencing of the organoids, which suggests depletion of CD73+CD104+ cells. The CD73+CD104+ population had enhanced organoid formation compared with the CD73-CD104+ population. Similarly, knock-down of CD73 resulted in decreased organoid formation rate. Genetic and pharmacologic inhibition of STAT6 prevented T helper 2 cytokine-induced depletion of CD73+CD104+ cells. Lastly, omeprazole treatment prevented the effects of IL4 and IL13 on the CD73+CD104+ population. CONCLUSIONS: This study addressed the role of CD73+CD104+ cells in epithelial renewal and homeostasis in the context of EoE. The depletion of the CD73+CD104+ self-renewal population by helper T cell 2 cytokines in EoE milieu may be perpetuating epithelial injury. Future therapies targeting epithelial restitution in EoE could decrease the need for immune modulation and steroid therapy.


Subject(s)
Eosinophilic Esophagitis , Interleukin-4 , 5'-Nucleotidase/therapeutic use , Animals , Cytokines , Eosinophilic Esophagitis/drug therapy , Eosinophilic Esophagitis/pathology , Homeostasis , Humans , Hyperplasia/pathology , Interleukin-13/pharmacology , Interleukin-13/therapeutic use , Interleukin-4/therapeutic use , Mice , Omeprazole/pharmacology , Omeprazole/therapeutic use , Stem Cells/metabolism
15.
Front Allergy ; 3: 983412, 2022.
Article in English | MEDLINE | ID: mdl-36591561

ABSTRACT

Subepithelial fibrosis occurs in a subset of eosinophilic esophagitis (EoE) patients and is associated with esophageal stricture. While mechanisms driving EoE fibrosis remain incompletely understood, findings from experimental systems support roles for epithelial-fibroblast crosstalk in this type of tissue remodeling. The current paradigm presents EoE as a progressive fibrostenotic disease in which aged patients develop fibrosis as a function of disease chronicity. In the current study we provide evidence that altered epithelial biology in the aging esophagus may also contribute to EoE-associated fibrosis. We find that induction of EoE inflammation in young and aged mice using the MC903/Ovalbumin protocol for the same time period results in increased lamina propria thickness uniquely in aged animals. Additionally, epithelial cells from aged mice less efficiently limit fibroblast contractility in collagen plug contraction assays compared to those from their young counterparts. Finally, to identify potential mechanisms through which aged esophageal epithelial cells may stimulate fibrotic remodeling, we perform cytokine array experiments in young and aged mice. These studies are significant as identification of age-associated factors that contribute to fibrotic remodeling may aid in the design of strategies toward early detection, prevention, and therapy of fibrostenotic EoE.

SELECTION OF CITATIONS
SEARCH DETAIL
...