Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38306027

ABSTRACT

 Ferroptosis is a form of programmed cell death that plays a significant role in causing several diseases such as heart attack and heart failure, through alterations in fat, amino acid, and iron metabolism. Comprehending the regulatory mechanisms of ferroptosis signaling is critical because it has a considerable effect on the elderly's mortality. Conversely, age-related changes in substrate metabolism and metabolite levels are recognized to give rise to obesity. Furthermore, research has proposed that aging and obesity-related changes in substrate metabolism may aggravate ferroptosis. The suppression of ferroptosis holds potential as a successful therapeutic approach for managing different diseases, including sarcopenia, cardiovascular diseases, and central nervous system diseases. However, the pathologic and biological mechanisms behind the function of ferroptosis are not fully comprehended yet. Physical activity could affect lipid, amino acid, and iron metabolism to modulate ferroptosis. The aim of this study is to showcase the current understanding of the molecular mechanisms leading to ferroptosis and discuss the role of aging and physical activity in this phenomenon.

2.
Article in English | MEDLINE | ID: mdl-37690386

ABSTRACT

This article presents the synthesis and application of a novel magnetic eutectogel constituting a polymeric deep eutectic solvent (PDES), carboxylated multiwall carbon nanotube (MWCNT-COOH), and super-dispersible/super-paramagnetic polyvinylpyrrolidone coated-Fe3O4 nanocrystals incorporated in alginate gel. Different methods were used for the characterization of novel polymeric based DES gel including FT-NMR, ATR-FTIR, and SEM were used. The novel DES eutectogel was used for the extraction of pesticides from honey. The modified eutectogel with PDES, MWCNT, and PDES-MWCNT showed 1.8-, 1.4-, and 2.5-fold enhancement in the sorption efficiency under green magnetic micro-solid-phase extraction (MSPE) method before GC-MS analysis. Important factors including the acidity of the samples, adsorption and desorption conditions, and the ionic strength of the preparation solution were investigated. The matrix effect, specificity, the quantification limits (0.023-1.023 µg kg-1), linear dynamic range (0.023-500 µg kg-1 with R2 of 0.9845-0.9986), relative standard deviations (<8.4%), were evaluated. In addition, the method was used to analyze 12 pesticides in four samples of honey. In the spiked concentration range of 0.1 to 10 µg kg-, the obtained recoveries were between 73.2 and 110.8% (RSD% = 8.1%, n = 3).


Subject(s)
Nanotubes, Carbon , Pesticides , Pesticides/analysis , Solvents/chemistry , Nanotubes, Carbon/chemistry , Povidone , Deep Eutectic Solvents , Benzoic Acid , Solid Phase Extraction/methods , Carboxylic Acids , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...