Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Process Saf Environ Prot ; 148: 437-461, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33071474

ABSTRACT

Sustainable use of the ocean for food and energy production is an emerging area of research in different countries around the world. This goal is pursued by the Australian aquaculture, offshore engineering and renewable energy industries, research organisations and the government through the "Blue Economy Cooperative Research Centre". To address the challenges of offshore food and energy production, leveraging the benefits of co-location, vertical integration, infrastructure and shared services, will be enabled through the development of novel Multi-Purpose Offshore-Platforms (MPOP). The structural integrity of the designed systems when being deployed in the harsh offshore environment is one of the main challenges in developing the MPOPs. Employing structural reliability analysis methods for assessing the structural safety of the novel aquaculture-MPOPs comes with different limitations. This review aims at shedding light on these limitations and discusses the current status and future directions for structural reliability analysis of a novel aquaculture-MPOP considering Australia's unique environment. To achieve this aim, challenges which exist at different stages of reliability assessment, from data collection and uncertainty quantification to load and structural modelling and reliability analysis implementation, are discussed. Furthermore, several solutions to these challenges are proposed based on the existing knowledge in other sectors, and particularly from the offshore oil and gas industry. Based on the identified gaps in the review process, potential areas for future research are introduced to enable a safer and more reliable operation of the MPOPs.

2.
Mar Pollut Bull ; 86(1-2): 91-101, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25113099

ABSTRACT

Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability. Massive corals are determined not to be vulnerable to wave induced structural damage, whereas branching corals are susceptible at wave induced orbital velocities exceeding 0.5m/s. Model results from a large suite of idealised bathymetry suggest that SLR of 1m or a loss of skeleton strength of order 25% significantly increases the area of reef flat where branching corals are exposed to damaging wave induced flows.


Subject(s)
Anthozoa/physiology , Climate Change , Water Movements , Animals , Anthozoa/anatomy & histology , Biomechanical Phenomena , Coral Reefs , Hydrodynamics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...