Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 10(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36975894

ABSTRACT

Diagnosis of coronary artery disease is mainly based on invasive imaging modalities such as X-ray angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Computed tomography coronary angiography (CTCA) is also used as a non-invasive imaging alternative. In this work, we present a novel and unique tool for 3D coronary artery reconstruction and plaque characterization using the abovementioned imaging modalities or their combination. In particular, image processing and deep learning algorithms were employed and validated for the lumen and adventitia borders and plaque characterization at the IVUS and OCT frames. Strut detection is also achieved from the OCT images. Quantitative analysis of the X-ray angiography enables the 3D reconstruction of the lumen geometry and arterial centerline extraction. The fusion of the generated centerline with the results of the OCT or IVUS analysis enables hybrid coronary artery 3D reconstruction, including the plaques and the stent geometry. CTCA image processing using a 3D level set approach allows the reconstruction of the coronary arterial tree, the calcified and non-calcified plaques as well as the detection of the stent location. The modules of the tool were evaluated for efficiency with over 90% agreement of the 3D models with the manual annotations, while a usability assessment using external evaluators demonstrated high usability resulting in a mean System Usability Scale (SUS) score equal to 0.89, classifying the tool as "excellent".

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3985-3988, 2022 07.
Article in English | MEDLINE | ID: mdl-36086124

ABSTRACT

Cardiovascular disease (CVD) and especially atherosclerosis are chronic inflammatory diseases which cause the atherosclerotic plaque growth in the arterial vessels and the blood flow reduction. Stents have revolutionized the treatment of this disease to a great extent by restoring the blood flow in the vessel. The present study investigates the performance of the blood flow after stent implantation in patient-specific coronary artery and demonstrates the effect of using Newtonian vs. non-Newtonian blood fluid models in the distribution of endothelial shear stress. In particular, the Navier-Stokes and continuity equations were employed, and three non-Newtonian fluid models were investigated (Carreau, Carreau-Yasuda and the Casson model). Computational finite elements models were used for the simulation of blood flow. The comparison of the results demonstrates that the Newtonian fluid model underestimates the calculation of Endothelial Shear Stress, while the three non-Newtonian fluids present similar distribution of shear stress. Keywords: Blood flow dynamics, stented artery, non-Newtonian fluid. Clinical Relevance- This work demonstrates that when blood flow modeling is performed at stented arteries and predictive models are developed, the non-Newtonian nature of blood must be considered.


Subject(s)
Coronary Vessels , Hemodynamics , Computer Simulation , Humans , Rheology , Stress, Mechanical
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4970-4973, 2022 07.
Article in English | MEDLINE | ID: mdl-36086562

ABSTRACT

Bioresorbable Vascular Scaffolds (BVS), developed to allow drug deliver and mechanical support, followed by complete resorption, have revolutionized atherosclerosis treatment. InSilc is a Cloud platform for in silico clinical trials (ISCT) used in the design, development and evaluation pipeline of stents. The platform integrates beyond the state-of-the-art multi-disciplinary and multiscale models, which predict the scaffold's performance in the short/acute and medium/long term. In this study, a use case scenario of two Bioabsorbable Vascular Stents (BVSs) implanted in the same arterial anatomy is presented, allowing the whole InSilc in silico pipeline to be applied and predict how the different aspects of this intervention affect the success of stenting process.


Subject(s)
Absorbable Implants , Percutaneous Coronary Intervention , Stents , Tissue Scaffolds
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4213-4217, 2021 11.
Article in English | MEDLINE | ID: mdl-34892153

ABSTRACT

The introduction of Bioresorbable Vascular Scaffolds (BVS) has revolutionized the treatment of atherosclerosis. InSilc is an in silico clinical trial (ISCT) platform in a Cloud-based environment used for the design, development and evaluation of BVS. Advanced multi-disciplinary and multiscale models are integrated in the platform towards predicting the short/acute and medium/long term scaffold performance. In this study, InSilc platform is employed in a use case scenario and demonstrates how the whole in silico pipeline allows the interpretation of the effect of the arterial anatomy configuration on stent implantation.


Subject(s)
Angioplasty, Balloon, Coronary , Drug-Eluting Stents , Absorbable Implants , Clinical Trials as Topic , Humans , Time Factors
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4354-4357, 2021 11.
Article in English | MEDLINE | ID: mdl-34892184

ABSTRACT

The type of the atherosclerotic plaque has significant clinical meaning since plaque vulnerability depends on its type. In this work, we present a computational approach which predicts the development of new plaques in coronary arteries. More specifically, we employ a multi-level model which simulates the blood fluid dynamics, the lipoprotein transport and their accumulation in the arterial wall and the triggering of inflammation using convection-diffusion-reaction equations and in the final level, we estimate the plaque volume which causes the arterial wall thickening. The novelty of this work relies on the conceptual approach that using the information from 94 patients with computed tomography coronary angiography (CTCA) imaging at two time points we identify the correlation of the computational results with the real plaque components detected in CTCA. In the next step, we use these correlations to generate two types of de-novo plaques: calcified and non-calcified. Evaluation of the model's performance is achieved using eleven patients, who present de-novo plaques at the follow-up imaging. The results demonstrate that the computationally generated plaques are associated significantly with the real plaques indicating that the proposed approach could be used for the prediction of specific plaque type formation.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Humans , Plaque, Atherosclerotic/diagnostic imaging
6.
Diagnostics (Basel) ; 11(8)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34441447

ABSTRACT

Intravascular ultrasound (IVUS) imaging offers accurate cross-sectional vessel information. To this end, registering temporal IVUS pullbacks acquired at two time points can assist the clinicians to accurately assess pathophysiological changes in the vessels, disease progression and the effect of the treatment intervention. In this paper, we present a novel two-stage registration framework for aligning pairs of longitudinal and axial IVUS pullbacks. Initially, we use a Dynamic Time Warping (DTW)-based algorithm to align the pullbacks in a temporal fashion. Subsequently, an intensity-based registration method, that utilizes a variant of the Harmony Search optimizer to register each matched pair of the pullbacks by maximizing their Mutual Information, is applied. The presented method is fully automated and only required two single global image-based measurements, unlike other methods that require extraction of morphology-based features. The data used includes 42 synthetically generated pullback pairs, achieving an alignment error of 0.1853 frames per pullback, a rotation error 0.93° and a translation error of 0.0161 mm. In addition, it was also tested on 11 baseline and follow-up, and 10 baseline and post-stent deployment real IVUS pullback pairs from two clinical centres, achieving an alignment error of 4.3±3.9 for the longitudinal registration, and a distance and a rotational error of 0.56±0.323 mm and 12.4°±10.5°, respectively, for the axial registration. Although the performance of the proposed method does not match that of the state-of-the-art, our method relies on computationally lighter steps for its computations, which is crucial in real-time applications. On the other hand, the proposed method performs even or better that the state-of-the-art when considering the axial registration. The results indicate that the proposed method can support clinical decision making and diagnosis based on sequential imaging examinations.

7.
IEEE Open J Eng Med Biol ; 2: 201-209, 2021.
Article in English | MEDLINE | ID: mdl-35402969

ABSTRACT

Goal: To develop a cardiovascular virtual population using statistical modeling and computational biomechanics. Methods: A clinical data augmentation algorithm is implemented to efficiently generate virtual clinical data using a real clinical dataset. An atherosclerotic plaque growth model is employed to 3D reconstructed coronary arterial segments to generate virtual coronary arterial geometries (geometrical data). Last, the combination of the virtual clinical and geometrical data is achieved using a methodology that allows for the generation of a realistic virtual population which can be used in in silico clinical trials. Results: The results show good agreement between real and virtual clinical data presenting a mean gof 0.1 ± 0.08. 400 virtual coronary arteries were generated, while the final virtual population includes 10,000 patients. Conclusions: The virtual arterial geometries are efficiently matched to the generated clinical data, both increasing and complementing the variability of the virtual population.

SELECTION OF CITATIONS
SEARCH DETAIL
...