Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(20): 5463-5478, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37638537

ABSTRACT

The major plant pest fall armyworm (FAW), Spodoptera frugiperda, is native to the Americas and has colonized Africa and Asia within the Eastern hemisphere since 2016, causing severe damage to multiple agricultural crop species. However, the genetic origin of these invasive populations requires more in-depth exploration. We analysed genetic variation across the genomes of 280 FAW individuals from both the Eastern hemisphere and the Americas. The global range-wide genetic structure of FAW shows that the FAW in America has experienced deep differentiation, largely consistent with the Z-chromosomal Tpi haplotypes commonly used to differentiate 'corn-strain' and 'rice-strain' populations. The invasive populations from Africa and Asia are different from the American ones and have a relatively homogeneous population structure, consistent with the common origin and recent spreading from Africa to Asia. Our analyses suggest that north- and central American 'corn-strain' FAW are the most likely sources of the invasion into the Eastern hemisphere. Furthermore, evidence based on genomic, transcriptomic and mitochondrial haplotype network analyses indicates an earlier, independent introduction of FAW into Africa, with subsequent migration into the recent invasive population.

2.
J Anim Ecol ; 91(9): 1826-1841, 2022 09.
Article in English | MEDLINE | ID: mdl-35678697

ABSTRACT

Invasive species pose a significant threat to biodiversity and agriculture world-wide. Natural enemies play an important part in controlling pest populations, yet we understand very little about the presence and prevalence of natural enemies during the early invasion stages. Microbial natural enemies of fall armyworm Spodoptera frugiperda are known in its native region, however, they have not yet been identified in Africa where fall armyworm has been an invasive crop pest since 2016. Larval samples were screened from Malawi, Rwanda, Kenya, Zambia, Sudan and Ghana for the presence of four different microbial natural enemies; two nucleopolyhedroviruses, Spodoptera frugiperda NPV (SfMNPV) and Spodoptera exempta NPV (SpexNPV); the fungal pathogen Metarhizium rileyi; and the bacterium Wolbachia. This study aimed to identify which microbial pathogens are present in invasive fall armyworm, and determine the geographical, meteorological and temporal variables that influence prevalence. Within 3 years of arrival, fall armyworm was exposed to all four microbial natural enemies. SfMNPV probably arrived with fall armyworm from the Americas, but this is the first putative evidence of host spillover from Spodoptera exempta (African armyworm) to fall armyworm for the endemic pathogen SpexNPV and for Wolbachia. It is also the first confirmed incidence of M. rileyi infecting fall armyworm in Africa. Natural enemies were localised, with variation being observed both nationally and temporally. The prevalence of SfMNPV (the most common natural enemy) was predominantly explained by variables associated with the weather; declining with increasing rainfall and increasing with temperature. However, virus prevalence also increased as the growing season progressed. The infection of an invasive species with a natural enemy from its native range and novel pathogens specific to its new range has important consequences for understanding the population ecology of invasive species and insect-pathogen interactions. Additionally, while it is widely known that temporal and geographic factors affect insect populations, this study reveals that these are important in understanding the distribution of microbial natural enemies associated with invasive pests during the early stages of invasion, and provide baseline data for future studies.


Subject(s)
Nucleopolyhedroviruses , Wolbachia , Animals , Introduced Species , Kenya , Spodoptera
3.
Insects ; 13(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35206776

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond.

4.
Plant Dis ; 102(3): 552-560, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30673475

ABSTRACT

Banana Fusarium wilt is a major production constraint globally and a significant threat to the livelihoods of millions of people in East and Central Africa (ECA). A proper understanding of the diversity and population dynamics of the causal agent, Fusarium oxysporum f. sp. cubense (Foc), could be useful for the development of sustainable disease management strategies for the pathogen. The current study investigated the diversity of Foc in ECA using vegetative compatibility group (VCG) analysis, PCR-RFLPs of the ribosomal DNA's intergenic spacer region, as well as phylogenetic analysis of the elongation factor-1α gene. Six VCGs (0124, 0125, 0128, 01212, 01220, and 01222), which all belong to one lineage (Foc lineage VI), were widely distributed throughout the region. VCGs 0128 and 01220 are reported for the first time in Burundi, the Democratic Republic of Congo (DRC), Rwanda, Tanzania, and Uganda, while VCG 01212 is reported in the DRC and Rwanda. Isolates that did not belong to any of the known VCGs were identified as Foc lineage VI members by phylogenetic analysis and may represent novel VCGs. CAV 2734, a banana pathogen collected in Rwanda, clustered with nonpathogenic F. oxysporum isolates in lineage VIII. Results from this study will contribute significantly toward the implementation of banana Fusarium wilt disease management practices in the region, such as the restricted movement of infected planting material and the selective planting of resistant banana varieties.


Subject(s)
Fusarium/genetics , Genetic Variation , Musa/microbiology , Plant Diseases/microbiology , Africa, Central , Africa, Eastern , Fusarium/classification , Fusarium/isolation & purification , Fusarium/pathogenicity , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...