Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 30(5): 824-831, 2019 May.
Article in English | MEDLINE | ID: mdl-30793264

ABSTRACT

Here, we report a continuous flow-based ionization method, capillary vibrating sharp-edge spray ionization (cVSSI), that nebulizes liquid sample directly at the outlet of a capillary without using high-speed nebulization gas or a high electrical field. cVSSI is built upon the recently reported VSSI principle which nebulizes bulk liquid using vibrating sharp-edges. By attaching a short piece of fused silica capillary on top of the vibrating glass slide in VSSI, liquid is nebulized at the outlet of the capillary as the result of the vibration. Utilizing standard 360-µm OD/100-µm ID capillary, cVSSI works with a wide range of flow rates from 1 µL/min to 1 mL/min. The power consumption is as low as 130 mW. ESI-like MS spectra are obtained for small molecules, peptides, and proteins. Five orders of magnitude linear response for acetaminophen solution is achieved with a limit of detection (LOD) of 3 nM. cVSSI is also demonstrated to be compatible with LC-MS analysis. Two LC-MS applications are demonstrated with cVSSI: (1) separation and detection of a mixture of small molecules and (2) bottom-up proteomics using a protein digest. A mixture of nine common metabolites was appropriately separated and detected using LC-cVSSI-MS. In the bottom-up experiment, 78 peptides were detected using LC-cVSSI-MS/MS with a protein coverage of 100% for cytochrome c, which is comparable with the coverage obtained using LC-ESI-MS. cVSSI offers a means of interfacing LC or other continuous flow-based applications to mass spectrometers with the salient features of voltage-free, flexibility, small footprint, and low power consumption.

2.
J Am Soc Mass Spectrom ; 29(2): 230-241, 2018 02.
Article in English | MEDLINE | ID: mdl-28956290

ABSTRACT

Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate (in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract. Graphical Abstract ᅟ.


Subject(s)
Ion Mobility Spectrometry/methods , Metabolomics/methods , Amino Acids/chemistry , Deuterium/chemistry , Deuterium Exchange Measurement/methods , Hydrogen/chemistry , Ions/chemistry , Kinetics , Lipids/chemistry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...