Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 8(4)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441848

ABSTRACT

The exploitation of lipid membranes in biosensors has provided the ability to reconstitute a considerable part of their functionality to detect trace of food toxicants and environmental pollutants. This paper reviews recent progress in biosensor technologies based on lipid membranes suitable for food quality monitoring and environmental applications. Numerous biosensing applications based on lipid membrane biosensors are presented, putting emphasis on novel systems, new sensing techniques, and nanotechnology-based transduction schemes. The range of analytes that can be currently using these lipid film devices that can be detected include, insecticides, pesticides, herbicides, metals, toxins, antibiotics, microorganisms, hormones, dioxins, etc. Technology limitations and future prospects are discussed, focused on the evaluation/validation and eventually commercialization of the proposed lipid membrane-based biosensors.

2.
Biosensors (Basel) ; 8(3)2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29949911

ABSTRACT

Lipid assemblies in the form of two dimensional films have been used extensively as biosensing platforms. These films exhibit certain similarities with cell membranes, thus providing a suitable means for the immobilization of proteinaceous moieties and, further, a number of intrinsic signal amplification mechanisms. Their implementation in the detection of toxins yielded reliable and fast detectors for in field analyses of environmental and clinical samples. Some examples are presented herein, including aflatoxin and cholera toxin detection. The conditions and parameters that determine the analytical specifications of the lipid membrane sensors are discussed, advantages and technology bottlenecks are reviewed, and possible further developments are highlighted.


Subject(s)
Biosensing Techniques/methods , Toxins, Biological/analysis , Calorimetry, Differential Scanning , Electrodes , Graphite/chemistry , Lipid Bilayers/chemistry , Polymers/chemistry
3.
Adv Food Nutr Res ; 84: 57-102, 2018.
Article in English | MEDLINE | ID: mdl-29555073

ABSTRACT

The modern environmental and food analysis requires sensitive, accurate, and rapid methods. The growing field of biosensors represents an answer to this demand. Unfortunately, most biosensor systems have been tested only on distilled water or buffered solutions, although applications to real samples are increasingly appearing in recent years. In this context, biosensors for potential food applications continue to show advances in areas such as genetic modification of enzymes and microorganisms, improvement of recognition element immobilization, and sensor interfaces. This chapter investigates the progress in the development of biosensors for the rapid detection of food toxicants for online applications. Recent progress in nanotechnology has produced affordable, mass-produced devices, and to integrate these into components and systems (including portable ones) for mass market applications for food toxicants monitoring. Sensing includes chemical and microbiological food toxicants, such as toxins, insecticides, pesticides, herbicides, microorganisms, bacteria, viruses and other microorganisms, phenolic compounds, allergens, genetically modified foods, hormones, dioxins, etc. Therefore, the state of the art of recent advances and future targets in the development of biosensors for food monitoring is summarized as follows: biosensors for food analysis will be highly sensitive, selective, rapidly responding, real time, massively parallel, with no or minimum sample preparation, and platform suited to portable and handheld nanosensors for the rapid detection of food toxicants for online uses even by nonskilled personnel.


Subject(s)
Biosensing Techniques , Food Contamination/analysis , Nanotechnology/instrumentation , Nanotechnology/methods , Biological Assay , Electrochemical Techniques , Food Analysis/methods , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Molecular Imprinting
4.
Sensors (Basel) ; 18(1)2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29346326

ABSTRACT

The advent of nanotechnology has brought along new materials, techniques, and concepts, readily adaptable to lipid membrane-based biosensing. The transition from micro-sensors to nano-sensors is neither straightforward nor effortless, yet it leads to devices with superior analytical characteristics: ultra-low detectability, small sample volumes, better capabilities for integration, and more available bioelements and processes. Environmental monitoring remains a complicated field dealing with a large variety of pollutants, several decomposition products, or secondary chemicals produced ad hoc in the short- or medium term, many sub-systems affected variously, and many processes largely unknown. The new generation of lipid membranes, i.e., nanosensors, has the potential for developing monitors with site-specific analytical performance and operational stability, as well as analyte-tailored types of responses. This review presents the state-of-the art, the opportunities for niche applicability, and the challenges that lie ahead.


Subject(s)
Nanotechnology , Biosensing Techniques , Environmental Monitoring , Humans , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...