Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 903: 166140, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37562627

ABSTRACT

Marine and freshwater bodies are the primary destinations of microplastics (MPs), where MPs can interact closely with algae. Here, we synthesized existing literature on the effect of MPs on algal growth. Studies examining the effects of MPs on algal growth have yielded conflicting results. Some studies reported growth inhibition, whereas others showed no significant effect or even growth enhancement. Data from 71 studies in the subject area were evaluated using cross-tables, scatterplots, and chi-square tests of independence, and four factors (polymer type, algal type, MP size, MP concentration) likely influencing the observations were identified. Experiments using certain polymers of plastic, such as polyvinyl chloride, and algal phyla, such as Chlorophyta, were more likely to show growth inhibition. Higher MP concentrations were more likely to reduce algal growth, which was further amplified by exposure time. However, MP size appeared to exhibit a nonlinear relationship with algal growth inhibition, suggesting that different MP sizes may elicit different effects. Finally, this review highlights the need for more standardized data collection and analysis methods as well as future research focused on exploring the possible mechanisms of growth hindrance and algae exposure to environmentally relevant conditions.

2.
Sci Total Environ ; 844: 156853, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35752236

ABSTRACT

Microplastics in agricultural soils have become the research hotspot in recent years, however, the quantitative methods based on the traditional visual inspection may have a high false detection rate. Here we combined the laser direct infrared (LDIR) and Fourier-transform infrared (FTIR) methods to investigate the microplastics in farmland with long-term agricultural activities. The results showed that the total abundance of microplastics reached 1.98 ± 0.41 × 105, 1.57 ± 0.28 × 105, 1.78 ± 0.27 × 105, and 3.20 ± 0.41 × 105 particles/kg soil in cotton fields with film mulching of 5, 10, 20, and >30 years, respectively. LDIR results indicated that microplastics ranging from 10 to 500 µm accounted for 96.5-99.9 % of the total microplastic amounts in the soils. Additionally, a total of 26 polymer types of microplastics were detected, among which polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyamide (PA), and polytetrafluoroethylene (PTFE) were dominantly observed. For the microplastics detected by FTIR (500 µm-5 mm), PE polymer was majorly observed (88.0-98.9 %). Most microplastics were films (88.2 %), while fibers and pellets were also found. The reclaimed water from sewage treatment plants, the drip irrigation utilities, and the residual plastic film are the potential sources of microplastics in the farmland soils. By using the automated quantitative and identifiable approaches, this study suggested that the commonly used visual counting method may underestimate the microplastic contamination in agricultural soils.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Plastics , Polyethylene , Polymers , Soil , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...