Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bioenerg Biomembr ; 56(2): 141-148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308068

ABSTRACT

This study investigates the effects of X-radiation on ATPase activity and antioxidant enzyme activity, particularly enzymes involved in proline biosynthesis, in yeast C. guilliermondii NP-4. Moreover, the study examined the post-irradiation repair processes in these cells. Results showed that X-irradiation at a dose of 300 Gy led to an increase in catalase (CAT) and superoxide dismutase (SOD) activity, as well as, an increase in the CAT/SOD ratio in C. guilliermondii NP-4. The repair of radiation-induced damage requires a substantial amount of energy, resulting in an increased demand for ATP in the irradiated and repaired yeasts. Consequently, the total and FoF1-ATPase activity in yeast homogenates and mitochondria increased after X-irradiation and post-irradiation repair. It was showed an increase in the activity of proline biosynthesis enzymes (ornithine transaminase and proline-5-carboxylate reductase) in X-irradiated C. guilliermondii NP-4, which remained elevated even after post-irradiation repair. As a result, the proline levels in X-irradiated and repaired yeasts were higher than those in non-irradiated cells. These findings suggest that proline may have a radioprotective effect on X-irradiated C. guilliermondii NP-4 yeasts. Taken together this study provides insights into the effects of X-radiation on ATPase activity, antioxidant enzyme activity, and proline biosynthesis in C. guilliermondii NP-4 yeast cells, highlighting the potential radioprotective properties of proline in X-irradiated yeasts.


Subject(s)
Antioxidants , Radiation-Protective Agents , Saccharomycetales , X-Rays , Superoxide Dismutase , Saccharomyces cerevisiae , Radiation-Protective Agents/pharmacology , Adenosine Triphosphatases
2.
Cell Biochem Funct ; 42(1): e3914, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269521

ABSTRACT

Conventional treatment methods are not effective enough to fight the rapid increase in cancer cases. The interest is increasing in the investigation of herbal sources for the development of new anticancer therapeutics. This study aims to investigate the antitumor capacity of Hypericum alpestre (H. alpestre) extract in vitro and in vivo, either alone or in combination with the inhibitors of the  l-arginine/polyamine/nitric oxide (NO) pathway, and to characterize its active phytochemicals using advanced chromatographic techniques. Our previous reports suggest beneficial effects of the arginase inhibitor NG-hydroxy-nor- l-arginine and NO inhibitor NG-nitro-Larginine methyl ester in the treatment of breast cancer via downregulation of polyamine and NO synthesis. Here, the antitumor properties of H. alpestre and its combinations were explored in vivo, in a rat model of mammary gland carcinogenesis induced by subcutaneous injection of 7,12-dimethylbenz[a]anthracene. The study revealed strong antiradical activity of H. alpestre aerial part extract in chemical (DPPH/ABTS) tests. In the in vitro antioxidant activity test, the H. alpestre extract demonstrated pro-oxidant characteristics in human colorectal (HT29) cells, which were contingent upon the hemostatic condition of the cells. The H. alpestre extract expressed a cytotoxic effect on HT29 and breast cancer (MCF-7) cells measured by the MTT test. According to comet assay results, H. alpestre extract did not exhibit genotoxic activity nor possessed antigenotoxic properties in HT29 cells. Overall, 233 substances have been identified and annotated in H. alpestre extract using the LC-Q-Orbitrap HRMS system. In vivo experiments using rat breast cancer models revealed that the H. alpestre extract activated the antioxidant enzymes in the liver, brain, and tumors. H. alpestre combined with chemotherapeutic agents attenuated cancer-like histological alterations and showed significant reductions in tumor blood vessel area. Thus, either alone or in combination with Nω -OH-nor- l-arginine and Nω -nitro- l-arginine methyl ester, H. alpestre extract exhibits pro- and antioxidant, antiangiogenic, and cytotoxic effects.


Subject(s)
Breast Neoplasms , Hypericum , Humans , Animals , Rats , Female , Antioxidants/pharmacology , Arginine , Carcinogenesis , Cell Transformation, Neoplastic , Metabolic Networks and Pathways , Breast Neoplasms/drug therapy , Polyamines
SELECTION OF CITATIONS
SEARCH DETAIL
...