Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Bull Math Biol ; 86(6): 66, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678489

ABSTRACT

The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil's nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.


Subject(s)
Apoptosis , Extracellular Traps , Lupus Erythematosus, Systemic , Mathematical Concepts , Models, Immunological , Neutrophils , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Humans , Neutrophils/immunology , Apoptosis/immunology , Autoantigens/immunology , Computer Simulation , Macrophages/immunology , Macrophages/metabolism , Neutrophil Activation/immunology , Macrophage Activation
2.
Cardiovasc Diabetol ; 22(1): 122, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226245

ABSTRACT

Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cardiovascular System , Diabetes Mellitus , Humans , SARS-CoV-2 , Diabetes Mellitus/diagnosis , Diabetes Mellitus/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics
4.
Microorganisms ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838411

ABSTRACT

The metabolic syndrome (MetS) is a complex disease of metabolic abnormalities, including obesity, insulin resistance, hypertension and dyslipidaemia, and it is associated with an increased risk of cardiovascular disease (CVD). Diabetic retinopathy (DR) is the leading cause of vision loss among working-aged adults around the world and is the most frequent complication in type 2 diabetic (T2D) patients. The gut microbiota are a complex ecosystem made up of more than 100 trillion of microbial cells and their composition and diversity have been identified as potential risk factors for the development of several metabolic disorders, including MetS, T2D, DR and CVD. Biomarkers are used to monitor or analyse biological processes, therapeutic responses, as well as for the early detection of pathogenic disorders. Here, we discuss molecular mechanisms underlying MetS, the effects of biological sex in MetS-related DR and gut microbiota, as well as the latest advances in biomarker research in the field. We conclude that sex may play an important role in gut microbiota influencing MetS-related DR.

5.
IEEE Trans Technol Soc ; 3(4): 272-289, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36573115

ABSTRACT

This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare and 2) to investigate the research question of what does "trustworthy AI" mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multiregional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient's lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia, Italy, since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses sociotechnical scenarios to identify ethical, technical, and domain-specific issues in the use of the AI system in the context of the pandemic.

6.
Can J Cardiol ; 38(12): 1844-1853, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152770

ABSTRACT

Despite currently available therapies, cardiovascular diseases (CVD) are among the leading causes of death globally. Biological sex is a critical determinant of the occurrence, progression and overall outcome of CVD. However, the underlying mechanisms are incompletely understood. A hallmark of CVD is cell death. Based on the inability of the human heart to regenerate, loss of functional cardiac tissue can lead to irreversible detrimental effects. Here, we summarize current knowledge on how biological sex affects cell death-related mechanisms in CVD. Initially, we discuss apoptosis and necrosis, but we specifically focus on the relatively newly recognized programmed necrosis-like processes: pyroptosis and necroptosis. We also discuss the role of 17ß-estradiol (E2) in these processes, particularly in terms of inhibiting pyroptotic and necroptotic signaling. We put forward that a better understanding of the effects of biological sex and E2 might lead to the identification of novel targets with therapeutic potential.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/therapy , Necrosis , Cell Death , Apoptosis , Pyroptosis
7.
Front Cardiovasc Med ; 9: 886592, 2022.
Article in English | MEDLINE | ID: mdl-35433883
8.
J Cardiovasc Dev Dis ; 9(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35323638

ABSTRACT

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality. Interestingly, male and female patients with CVD exhibit distinct epidemiological and pathophysiological characteristics, implying a potentially important role for primary and secondary sex determination factors in heart development, aging, disease and therapeutic responses. Here, we provide a concise review of the field and discuss current gaps in knowledge as a step towards elucidating the "sex determination-heart axis". We specifically focus on cardiovascular manifestations of abnormal sex determination in humans, such as in Turner and Klinefelter syndromes, as well as on the differences in cardiac regenerative potential between species with plastic and non-plastic sexual phenotypes. Sex-biased cardiac repair mechanisms are also discussed with a focus on the role of the steroid hormone 17ß-estradiol. Understanding the "sex determination-heart axis" may offer new therapeutic possibilities for enhanced cardiac regeneration and/or repair post-injury.

9.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163044

ABSTRACT

Biological sex influences disease development and progression. The steroid hormone 17ß-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion-fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.


Subject(s)
Estradiol/pharmacology , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Receptors, Estrogen/metabolism , Animals , Cardiovascular System/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Male , Mitochondria/drug effects , Nervous System/metabolism , Sex Characteristics
12.
Eur Heart J ; 42(20): 2000-2011, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33677556

ABSTRACT

AIMS: Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure. METHODS AND RESULTS: We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 × 10-11 and 7.7 × 10-4 in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 × 10-8 and 1.4 × 10-3 in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene. CONCLUSION: This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure, Systolic , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins , Cardiomyopathy, Dilated/genetics , Chromosomes , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Heart Failure, Systolic/genetics , Humans , Polymorphism, Single Nucleotide/genetics
14.
Circ Res ; 128(3): 335-357, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33539225

ABSTRACT

RATIONALE: Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE: In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS: KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS: Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM.


Subject(s)
Diabetic Cardiomyopathies/metabolism , Forkhead Box Protein O1/metabolism , Kruppel-Like Transcription Factors/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , PPAR alpha/metabolism , Aged , Animals , Cell Line , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Disease Models, Animal , Female , Forkhead Box Protein O1/genetics , Gene Expression Regulation , Humans , Kruppel-Like Transcription Factors/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Myocytes, Cardiac/pathology , PPAR alpha/genetics , Transcription, Genetic
15.
Front Cardiovasc Med ; 8: 759735, 2021.
Article in English | MEDLINE | ID: mdl-35083297

ABSTRACT

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.

17.
Clin Epigenetics ; 12(1): 106, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32664951

ABSTRACT

BACKGROUND: H3K27ac histone acetylome changes contribute to the phenotypic response in heart diseases, particularly in end-stage heart failure. However, such epigenetic alterations have not been systematically investigated in remodeled non-failing human hearts. Therefore, valuable insight into cardiac dysfunction in early remodeling is lacking. This study aimed to reveal the acetylation changes of chromatin regions in response to myocardial remodeling and their correlations to transcriptional changes of neighboring genes. RESULTS: We detected chromatin regions with differential acetylation activity (DARs; Padj. < 0.05) between remodeled non-failing patient hearts and healthy donor hearts. The acetylation level of the chromatin region correlated with its RNA polymerase II occupancy level and the mRNA expression level of its adjacent gene per sample. Annotated genes from DARs were enriched in disease-related pathways, including fibrosis and cell metabolism regulation. DARs that change in the same direction have a tendency to cluster together, suggesting the well-reorganized chromatin architecture that facilitates the interactions of regulatory domains in response to myocardial remodeling. We further show the differences between the acetylation level and the mRNA expression level of cell-type-specific markers for cardiomyocytes and 11 non-myocyte cell types. Notably, we identified transcriptome factor (TF) binding motifs that were enriched in DARs and defined TFs that were predicted to bind to these motifs. We further showed 64 genes coding for these TFs that were differentially expressed in remodeled myocardium when compared with controls. CONCLUSIONS: Our study reveals extensive novel insight on myocardial remodeling at the DNA regulatory level. Differences between the acetylation level and the transcriptional level of cell-type-specific markers suggest additional mechanism(s) between acetylome and transcriptome. By integrating these two layers of epigenetic profiles, we further provide promising TF-encoding genes that could serve as master regulators of myocardial remodeling. Combined, our findings highlight the important role of chromatin regulatory signatures in understanding disease etiology.


Subject(s)
Chromatin/metabolism , Epigenomics/methods , Heart Failure/genetics , Histones/metabolism , Acetylation , Adult , Case-Control Studies , Female , Heart Failure/metabolism , Humans , Male , Myocardium/metabolism , Myocytes, Cardiac/metabolism , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , Transcription Factors , Transcriptome/genetics , Ventricular Remodeling/genetics
18.
Biol Sex Differ ; 11(1): 31, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32487164

ABSTRACT

Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.


Subject(s)
Estrogens/physiology , Hypertension , Sex Characteristics , Animals , Cardiomegaly/etiology , Humans , Hypertension/complications , Hypertension/physiopathology , Kidney Diseases/etiology , Kidney Diseases/physiopathology , Vascular Stiffness
20.
J Am Coll Cardiol ; 75(9): 1074-1082, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32138968

ABSTRACT

Heart failure (HF) is a complex condition affecting >40 million people worldwide. It is defined by failure of the heart to pump (HF with reduced ejection fraction) or by the failure of the heart to relax, resulting in reduced filling but with preserved ejection fraction (HFpEF). HFpEF affects approximately 50% of patients with HF, most of whom are women. Given that the annual mortality ranges from 10% to 30% and as there are no treatments specifically directed for HFpEF, there is a need for better understanding of the underlying mechanisms of this condition. We put forward the hypothesis that the decline of estrogen at menopause might contribute to the pathogenesis of HFpEF and we highlight potential underlying mechanisms of estrogen action, which may attenuate the development of HFpEF. We also discuss areas in which additional research is needed to develop new approaches for prevention and treatment of HFpEF.


Subject(s)
Estrogens/deficiency , Heart Failure, Diastolic/etiology , Menopause/physiology , Endothelium, Vascular/physiopathology , Estrogen Replacement Therapy , Extracellular Matrix/metabolism , Heart Failure, Diastolic/prevention & control , Humans , Inflammation/complications , Natriuretic Peptides/metabolism , Oxidative Stress , Renin-Angiotensin System
SELECTION OF CITATIONS
SEARCH DETAIL
...