Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
FEBS J ; 287(20): 4481-4499, 2020 10.
Article in English | MEDLINE | ID: mdl-32096311

ABSTRACT

5-Lipoxygenase (5-LO) is the initial enzyme in the biosynthesis of leukotrienes, which are mediators involved in pathophysiological conditions such as asthma and certain cancer types. Knowledge of proteins involved in 5-LO pathway regulation, including gene regulatory proteins, is needed to evaluate all options for therapeutic intervention in these diseases. Here, we present a mass spectrometric screening of ALOX5 promoter-interacting proteins, obtained by DNA pulldown and label-free quantitative mass spectrometry. Protein preparations from myeloid and B-lymphocytic cell lines were screened for promoter DNA interactors. Through statistical analysis, 66 proteins were identified as specific ALOX5 promotor binding proteins. Among those, the 15 most likely candidates for a prominent role in ALOX5 gene regulation are the known ALOX5 interactors Sp1 and Sp3, the related factor Sp2, two Krüppel-like factors (KLF13 and KLF16) and six other zinc finger proteins (MAZ, PRDM10, VEZF1, ZBTB7A, ZNF281 and ZNF579). Intriguingly, we also identified two helicases (BLM and DHX36) and the proteins hnRNPD and hnRNPK, which are, together with the protein MAZ, known to interact with DNA G-quadruplex structures. As G-quadruplexes are implicated in gene regulation, spectroscopic and antibody-based methods were used to confirm their presence within the GC-rich sequence of the ALOX5 promoter. In summary, we have systematically characterized the interactome of the ALOX5 promoter, identifying several zinc finger proteins as novel potential ALOX5 gene regulators. Further, we have shown that the ALOX5 promoter can form DNA G-quadruplex structures, which may play a functional role in ALOX5 gene regulation.


Subject(s)
Carrier Proteins/analysis , Proteomics , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Carrier Proteins/metabolism , Cells, Cultured , DNA/chemistry , G-Quadruplexes , Humans , Mass Spectrometry , Promoter Regions, Genetic/genetics
2.
J Proteome Res ; 18(3): 1289-1298, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30698437

ABSTRACT

Sample preparation for mass-spectrometry-based proteomic analyses usually requires intricate, multistep workflows that are often limited in capacity or suffer from sample loss. Here, we introduce a lean adsorption-based protocol (ABP) for the extraction of proteins from fresh cell lysates that enables us to modify and tag protein samples under harsh conditions, such as organic solvents, high salt concentrations, or low pH values. This offers high versatility while also reducing the required steps in the preparation process significantly. Protein identifications are slightly increased compared to traditional acetone precipitation followed by an in-solution digestion (AP/IS) or filter aided sample preparation (FASP) and proved complementary to both methods regarding proteome coverage. When combined with ArgC-like digestion, this approach delivered 5386 uniquely identified proteins, a substantial increase of 18.27% over tryptic digestion (4554), while decreasing spectra complexity due to a lower number of peptide to spectra matches per protein and the number of missed cleaved peptides. In addition, an increased number of identified membrane proteins and histones as well as improved fragmentation and intensity coverage were observed through comprehensive data analysis.


Subject(s)
Aldehyde Oxidoreductases/pharmacology , Bacterial Proteins/pharmacology , Proteins/isolation & purification , Proteome/isolation & purification , Proteomics/methods , Acetone/chemistry , Aldehyde Oxidoreductases/chemistry , Bacterial Proteins/chemistry , Chemical Precipitation , Escherichia coli/enzymology , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Proteins/chemistry , Proteome/chemistry , Silicon Dioxide/chemistry , Solvents/chemistry , Transferrin/chemistry
3.
Cell Chem Biol ; 26(1): 60-70.e4, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30415966

ABSTRACT

5-Lipoxygenase (5-LO) initiates the biosynthesis of pro-inflammatory leukotrienes from arachidonic acid, which requires the nuclear membrane-bound 5-LO-activating protein (FLAP) for substrate transfer. Here, we identified human 5-LO as a molecular target of melleolides from honey mushroom (Armillaria mellea). Melleolides inhibit 5-LO via an α,ß-unsaturated aldehyde serving as Michael acceptor for surface cysteines at the substrate entrance that are revealed as molecular determinants for 5-LO activity. Experiments with 5-LO mutants, where select cysteines had been replaced by serine, indicated that the investigated melleolides suppress 5-LO product formation via two distinct modes of action: (1) by direct interference with 5-LO activity involving two or more of the cysteines 159, 300, 416, and 418, and (2) by preventing 5-LO/FLAP assemblies involving selectively Cys159 in 5-LO. Interestingly, replacement of Cys159 by serine prevented 5-LO/FLAP assemblies as well, implying Cys159 as determinant for 5-LO/FLAP complex formation at the nuclear membrane required for leukotriene biosynthesis.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Armillaria/chemistry , Cysteine/metabolism , Lipoxygenase Inhibitors/pharmacology , Sesquiterpenes/pharmacology , A549 Cells , Dose-Response Relationship, Drug , Humans , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Sesquiterpenes/chemistry , Structure-Activity Relationship
4.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 40-49, 2019 May.
Article in English | MEDLINE | ID: mdl-29964304

ABSTRACT

RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of covalent 5-lipoxygenase inhibitors is challenging due to unknown amino acid specificity and low posttranslational modification (PTM)-identification rates. The analysis of the amino-acid specificity and of the characteristic fragmentation of chemically modified peptides is considered to improve knowledge for the analysis of chemically modified peptides and proteins by MALDI-MS. METHODS: Various compounds were used to investigate the modification of synthetic peptides carrying reactive amino acid residues. Mass spectra were recorded using a MALDI-LTQ Orbitrap XL for high-resolution mass spectrometry and ion trap MALDI-MS2 . UV-Vis-based reduction and radical scavenging analysis was conducted. The on-plate digestion method described by Rühl et al was utilized for modification-site analysis at 5-lipoxygenase. RESULTS: The analysis of amino-acid-specific reactivity revealed the reactivity of quinones towards cysteine residues and the potential occurrence of a subsequent oxidative process was observed by an UV-Vis-based reduction assay. MALDI collision-induced dissociation tandem mass spectrometry (CID-MS2 ) indicated a prominent fragmentation mechanism of modified cysteine and histidine residues. Fragmentation included highly abundant neutral-loss signals which could be used to identify new modifications induced by chemical modifiers at the cysteine-159 residue of 5-lipoxygenase. CONCLUSIONS: Specificity and fragmentation analysis provides crucial information for the analysis of chemically modified cysteines and histidines by MALDI-MS. Elucidation of binding sites by MALDI-MS has been significantly improved using an easy-to-run peptide assay and gives background information for the analysis in the case of chemically modified 5-lipoxygenase.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods , Binding Sites , Cysteine/analysis , Cysteine/chemistry , Cysteine/metabolism , Histidine/analysis , Histidine/chemistry , Histidine/metabolism , Lipoxygenase , Lipoxygenase Inhibitors , Peptide Fragments/analysis , Peptide Fragments/chemistry , Peptides/analysis , Peptides/metabolism , Protein Binding , Proteins/analysis , Proteins/metabolism , Quinones/chemistry
5.
J Mass Spectrom ; 53(8): 675-679, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29787639

ABSTRACT

We show an easy and fast method for improved detection of lipophilic peptides with MALDI-MS utilizing the nonionic detergents n-octylglucoside and n-dodecylmaltoside (laurylmaltoside). Investigations comprised on-plate digestion of proteins with trypsin, detergent effects on the protease trypsin, and the changes in MALDI matrix crystallization. Investigations also exhibited a higher tryptic activity in trypsin activity assay of 139% when using laurylmaltoside as supplement. Crystallization changed toward a more homogeneous crystal distribution and especially trypsinized insulin spectra recorded with MALDI-MS showed improved detectability of lipophilic peptides.


Subject(s)
Glucosides/chemistry , Lipopeptides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Trypsin/chemistry , Crystallization , Enzyme Activation , Oxidation-Reduction , Proteolysis
6.
Biochim Biophys Acta Bioenerg ; 1859(5): 366-373, 2018 May.
Article in English | MEDLINE | ID: mdl-29501404

ABSTRACT

The NADH:ubiquinone oxidoreductase (complex I) is the first enzyme of the respiratory chain and the entry point for most electrons. Generally, the bacterial complex I consists of 14 core subunits, homologues of which are also found in complex I of mitochondria. In complex I preparations from the hyperthermophilic bacterium Aquifex aeolicus we have identified 20 partially homologous subunits by combining MALDI-TOF and LILBID mass spectrometry methods. The subunits could be assigned to two different complex I isoforms, named NQOR1 and NQOR2. NQOR1 consists of subunits NuoA2, NuoB, NuoD2, NuoE, NuoF, NuoG, NuoI1, NuoH1, NuoJ1, NuoK1, NuoL1, NuoM1 and NuoN1, with an entire mass of 504.17 kDa. NQOR2 comprises subunits NuoA1, NuoB, NuoD1, NuoE, NuoF, NuoG, NuoH2, NuoI2, NuoJ1, NuoK1, NuoL2, NuoM2 and NuoN2, with a total mass of 523.99 kDa. Three Fe-S clusters could be identified by EPR spectroscopy in a preparation containing predominantly NQOR1. These were tentatively assigned to a binuclear center N1, and two tetranuclear centers, N2 and N4. The redox midpoint potentials of N1 and N2 are -273 mV and -184 mV, respectively. Specific activity assays indicated that NQOR1 from cells grown under low concentrations of oxygen was the more active form. Increasing the concentration of oxygen in the bacterial cultures induced formation of NQOR2 showing the lower specific activity.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/blood , Electron Transport Complex I/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1913-1920, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28802701

ABSTRACT

The mitochondrial acyl carrier protein (ACPM/NDUFAB1) is a central element of the mitochondrial fatty acid synthesis type II machinery. Originally ACPM was detected as a subunit of respiratory complex I but the reason for the association with the large enzyme complex remained elusive. Complex I from the aerobic yeast Yarrowia lipolytica comprises two different ACPMs, ACPM1 and ACPM2. They are anchored to the protein complex by LYR (leucine-tyrosine-arginine) motif containing protein (LYRM) subunits LYRM3 (NDUFB9) and LYRM6 (NDUFA6). The ACPM1-LYRM6 and ACPM2-LYRM3 modules are essential for complex I activity and assembly/stability, respectively. We show that in addition to the complex I bound fraction, ACPM1 is present as a free matrix protein and in complex with the soluble LYRM4(ISD11)/NFS1 complex implicated in Fe-S cluster biogenesis. We show that the presence of a long acyl chain bound to the phosphopantetheine cofactor is important for docking ACPMs to protein complexes and we propose that association of ACPMs and LYRMs is universally based on a new protein-protein interaction motif.


Subject(s)
Acyl Carrier Protein/genetics , Fungal Proteins/genetics , Iron-Sulfur Proteins/genetics , Mitochondria/metabolism , Multiprotein Complexes/chemistry , Acyl Carrier Protein/metabolism , Amino Acid Sequence/genetics , Electron Transport Complex I/genetics , Fatty Acids/biosynthesis , Iron-Sulfur Proteins/metabolism , Mitochondria/chemistry , Mitochondria/genetics , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae/metabolism , Yarrowia/metabolism
8.
J Proteome Res ; 16(10): 3852-3862, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28821210

ABSTRACT

Birch pollen allergy is diagnosed and treated with aqueous extracts from birch pollen, which contain a mixture of allergens and nonallergenic proteins, including large numbers of closely related sequence variants, so-called iso-allergens of the major allergen, Bet v 1. The quality of therapeutic and diagnostic allergen products largely depends on the allergen and iso-allergen composition. Several biochemical methods are currently applied to detect and quantify allergens and to record protein profiles without differentiating between iso-allergens. Mass spectrometry (MS) may entirely replace these technologies, as it allows sequence specific identification and quantification of proteins and protein profiles including sequence variants in one run. However, the protein inference problem still hampers the automatic assignment of peptide sequences to proteins, consequently impeding the quantification of sequence variants. Therefore, the aim of the study was to set up semitargeted analyses of label-free MS data that allow unambiguous identification and quantification of birch pollen allergens and nonallergenic proteins. We combined data independent acquisition with manual assignment of predefined target sequences for quantification of iso-allergens and automatic quantification of other allergens and nonallergenic proteins. The quantitative data for birch pollen allergens and sequence variants of Bet v 1 were further confirmed by multiple reaction monitoring.


Subject(s)
Antigens, Plant/chemistry , Betula/adverse effects , Hypersensitivity/diagnosis , Plant Proteins/chemistry , Allergens/adverse effects , Allergens/immunology , Antigens, Plant/immunology , Betula/chemistry , Betula/immunology , Humans , Hypersensitivity/drug therapy , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mass Spectrometry , Plant Proteins/immunology , Pollen/adverse effects , Pollen/immunology , Quality Control
9.
Article in English | MEDLINE | ID: mdl-28163681

ABSTRACT

Synaptic release sites are characterized by exocytosis-competent synaptic vesicles tightly anchored to the presynaptic active zone (PAZ) whose proteome orchestrates the fast signaling events involved in synaptic vesicle cycle and plasticity. Allocation of the amyloid precursor protein (APP) to the PAZ proteome implicated a functional impact of APP in neuronal communication. In this study, we combined state-of-the-art proteomics, electrophysiology and bioinformatics to address protein abundance and functional changes at the native hippocampal PAZ in young and old APP-KO mice. We evaluated if APP deletion has an impact on the metabolic activity of presynaptic mitochondria. Furthermore, we quantified differences in the phosphorylation status after long-term-potentiation (LTP) induction at the purified native PAZ. We observed an increase in the phosphorylation of the signaling enzyme calmodulin-dependent kinase II (CaMKII) only in old APP-KO mice. During aging APP deletion is accompanied by a severe decrease in metabolic activity and hyperphosphorylation of CaMKII. This attributes an essential functional role to APP at hippocampal PAZ and putative molecular mechanisms underlying the age-dependent impairments in learning and memory in APP-KO mice.

10.
J Proteome Res ; 16(2): 978-987, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28051317

ABSTRACT

Enzymatic digestion of complex protein samples is often performed by use of multiple proteases to improve protein identification and characterization. Combining trypsin with ArgC is one option to enhance sequence coverage in bottom-up proteomics. However, the low selectivity of this endoprotease derogates from the benefit of the combination. Our approach here is to mimic ArgC digestion by chemically modifying all lysine residues in proteins so that trypsin can only cleave C-terminal to arginine. Four different amine modifications, dimethylation, acetylation, propionylation, and carbethoxylation, were tested, and the protocols were optimized. A nearly complete conversion of the primary amines was achieved for all modifications. Tryptic digestion of Escherichia coli lysate proteins after acylation of lysine residues shows the most significant improvement compared with data received from ArgC digest. After propionylation, 9216 unique peptides identified 1439 proteins, which, compared with a conventional tryptic digestion, represents the identification of 150 additional proteins due to a reasonable reduction of the sample complexity and higher fragmentation efficiencies of the peptides. It is therefore concluded that the Arg-C like digestion should no longer be regarded as a complementary approach but forms a viable and superior alternative to the conventional trypsin digestion.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Bacterial Proteins/chemistry , Escherichia coli Proteins/analysis , Peptide Fragments/isolation & purification , Protein Processing, Post-Translational , Proteome/analysis , Trypsin/chemistry , Acetylation , Amino Acid Sequence , Chromatography, Liquid , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Ethyl Ethers/chemistry , Methylation , Propionates/chemistry , Proteolysis , Proteome/chemistry , Tandem Mass Spectrometry
11.
Biochem Pharmacol ; 123: 52-62, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27671344

ABSTRACT

5-Lipoxygenase (5-LO, EC1.13.11.34) has been implicated in the pathogenesis of inflammatory and immune diseases. Recently, aminothiazole comprising inhibitors have been discovered for this valuable target. Yet, the molecular mode of action of this class of substances is only poorly understood. Here, we present the detailed molecular mechanism of action of the compound class and the in vitro pharmacological profile of two lead compounds ST-1853 and ST-1906. Mechanistic studies with recombinant proteins as well as intact cell assays enabled us to define this class as a novel type of 5-LO inhibitors with unique characteristics. The parent compounds herein presented a certain reactivity concerning oxidation and thiol binding: Unsubstituted aminophenols bound covalently to C159 and C418 of human 5-LO. Yet, dimethyl substitution of the aminophenol prevented this reactivity and slowed down phase II metabolism. Both ST-1853 and ST-1906 confirmed their lead likeness by retaining their high potency in physiologically relevant 5-LO activity assays, high metabolic stability, high specificity and non-cytotoxicity.


Subject(s)
Lipoxygenase Inhibitors/pharmacology , Thiazoles/pharmacology , Cells, Cultured , Humans , Lipoxygenase Inhibitors/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thiazoles/pharmacokinetics
12.
Biochem Pharmacol ; 125: 55-74, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27823964

ABSTRACT

Recently, we published that nitro-fatty acids (NFA) are potent electrophilic molecules which inhibit 5-lipoxygenase (5-LO) by interacting catalytically with cysteine residues next to a substrate entry channel. The electrophilicity is derived from an intramolecular Michael acceptor moiety consisting of an electron-withdrawing group in close proximity to a double bond. The potential of the Michael acceptor moiety to interact with functionally relevant cysteines of proteins potentially renders them effective and sustained enzyme activity modulators. We screened a large library of naturally derived and synthetic electrophilic compounds to investigate whether other types of Michael acceptor containing drugs suppress 5-LO enzyme activity. The activity was measured by assessing the effect on the 5-LO product formation of intact human polymorphonuclear leukocytes. We demonstrated that a number of structurally different compounds were suppressive in the activity assays and showed that Michael acceptors of the quinone and nitro-alkene group produced the strongest inhibition of 5-LO product formation. Reactivity with the catalytically relevant cysteines 416 and 418 was confirmed using mutated recombinant 5-LO and mass spectrometric analysis (MALDI-MS). In the present study, we show for the first time that a number of well-recognized naturally occurring or synthetic anti-inflammatory compounds carrying a Michael acceptor, such as thymoquinone (TQ), the paracetamol metabolite NAPQI, the 5-LO inhibitor AA-861, and bardoxolone methyl (also known as RTA 402 or CDDO-methyl ester) are direct covalent 5-LO enzyme inhibitors that target the catalytically relevant cysteines 416 and 418.


Subject(s)
Cysteine/drug effects , Lipoxygenase Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
13.
PLoS Comput Biol ; 12(4): e1004832, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27092780

ABSTRACT

The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aß-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Hippocampus/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/deficiency , Amyloid beta-Protein Precursor/genetics , Animals , Computational Biology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Presynaptic Terminals/metabolism , Protein Interaction Maps , Proteome/metabolism , Synapses/metabolism
14.
J Alzheimers Dis ; 50(1): 201-15, 2016.
Article in English | MEDLINE | ID: mdl-26639968

ABSTRACT

Aberrant neuronal network activity associated with neuronal hyperexcitability seems to be an important cause of cognitive decline in aging and Alzheimer's disease (AD). Out of many antiepileptics, only levetiracetam improved cognitive dysfunction in AD patients and AD animal models by reducing hyperexcitability. As impaired inhibitory interneuronal function, rather than overactive neurons, seems to be the underlying cause, improving impaired neuronal function rather than quieting overactive neurons might be relevant in explaining the lack of activity of the other antiepileptics. Interestingly, improvement of cognitive deficits by levetiracetam caused by small levels of soluble Aß was accompanied by improvement of synaptic function and plasticity. As the negative effects of Aß on synaptic plasticity strongly correlate with mitochondrial dysfunction, wehypothesized that the effect of levetiracetam on synaptic activity might be raised by an improved mitochondrial function. Accordingly, we investigated possible effects of levetiracetam on neuronal deficits associated with mitochondrial dysfunction linked to aging and AD. Levetiracetam improved several aspects of mitochondrial dysfunction including alterations of fission and fusion balance in a cell model for aging and early late-onset AD. We demonstrate for the first time, using immunohistochemistry and proteomics, that the synaptic vesicle protein 2A (SV2a), the molecular target of levetiracetam, is expressed in mitochondria. In addition, levetiracetam shows significant effect on the opening of the mitochondrial permeability transition pore. Importantly, the effects of levetiracetam were significantly abolished when SV2a was knockdown using siRNA. In conclusion, interfering with the SV2a protein at the mitochondrial level and thereby improving mitochondrial function might represent an additional therapeutic effect of levetiracetam to improve symptoms of late-onset AD.


Subject(s)
Aging/pathology , Alzheimer Disease/drug therapy , Membrane Glycoproteins/metabolism , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Nootropic Agents/therapeutic use , Piracetam/analogs & derivatives , Adenosine Triphosphate/metabolism , Alzheimer Disease/complications , Alzheimer Disease/pathology , Animals , Brain/ultrastructure , Cell Line , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Female , GAP-43 Protein/metabolism , Gene Expression Regulation/drug effects , Humans , Levetiracetam , Male , Membrane Glycoproteins/genetics , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Permeability Transition Pore , Nerve Tissue Proteins/genetics , Nitroprusside/pharmacology , Piracetam/therapeutic use , Proteomics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats
15.
Planta ; 243(3): 733-47, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26669598

ABSTRACT

MAIN CONCLUSION: Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.


Subject(s)
Arabidopsis/metabolism , HSP70 Heat-Shock Proteins/metabolism , Medicago sativa/metabolism , Pisum sativum/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Chloroplasts/metabolism , Cytosol/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/isolation & purification , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Intracellular Membranes/metabolism , Mass Spectrometry , Medicago sativa/cytology , Medicago sativa/genetics , Pisum sativum/cytology , Pisum sativum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Transport
16.
PLoS One ; 10(11): e0142404, 2015.
Article in English | MEDLINE | ID: mdl-26561299

ABSTRACT

Allergy against birch pollen is among the most common causes of spring pollinosis in Europe and is diagnosed and treated using extracts from natural sources. Quality control is crucial for safe and effective diagnosis and treatment. However, current methods are very difficult to standardize and do not address individual allergen or isoallergen composition. MS provides information regarding selected proteins or the entire proteome and could overcome the aforementioned limitations. We studied the proteome of birch pollen, focusing on allergens and isoallergens, to clarify which of the 93 published sequence variants of the major allergen, Bet v 1, are expressed as proteins within one source material in parallel. The unexpectedly complex Bet v 1 isoallergen composition required manual data interpretation and a specific design of databases, as current database search engines fail to unambiguously assign spectra to highly homologous, partially identical proteins. We identified 47 non-allergenic proteins and all 5 known birch pollen allergens, and unambiguously proved the existence of 18 Bet v 1 isoallergens and variants by manual data analysis. This highly complex isoallergen composition raises questions whether isoallergens can be ignored or must be included for the quality control of allergen products, and which data analysis strategies are to be applied.


Subject(s)
Anti-Allergic Agents/chemistry , Antigens, Plant/immunology , Pollen/immunology , Quality Control , Rhinitis, Allergic, Seasonal/drug therapy , Anti-Allergic Agents/therapeutic use , Databases, Factual , Mass Spectrometry , Material Safety Data Sheets , Rhinitis, Allergic, Seasonal/immunology
17.
Pharmacol Res ; 102: 53-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26361729

ABSTRACT

The antimicrobial peptide LL-37 is the sole member of the human cathelicidin family with immune system-modulating properties and roles in autoimmune disease development. Small molecules able to interact with LL-37 and to modulate its functions have not been described yet. Boswellic acids (BAs) are pentacyclic triterpene acids that are bioactive principles of frankincense extracts used as anti-inflammatory remedies. Although various anti-inflammatory modes of action have been proposed for BAs, the pharmacological profile of these compounds is still incompletely understood. Here, we describe the identification of human LL-37 as functional target of BAs. In unbiased target fishing experiments using immobilized BAs as bait and human neutrophils as target source, LL-37 was identified as binding partner assisted by MALDI-TOF mass spectrometry. Thermal stability experiments using circular dichroism spectroscopy confirm direct interaction between BAs and LL-37. Of interest, this binding of BAs resulted in an inhibition of the functionality of LL-37. Thus, the LPS-neutralizing properties of isolated LL-37 were inhibited by 3-O-acetyl-ß-BA (Aß-BA) and 3-O-acetyl-11-keto-ß-BA (AKß-BA) in a cell-free limulus amoebocyte lysate assay with EC50=0.2 and 0.8 µM, respectively. Also, LL-37 activity was inhibited by these BAs in LL-37-enriched supernatants of stimulated neutrophils or human plasma derived from stimulated human whole blood. Together, we reveal BAs as inhibitors of LL-37, which might be a relevant mechanism underlying the anti-inflammatory properties of BAs and suggests BAs as suitable chemical tools or potential agents for intervention with LL-37 and related disorders.


Subject(s)
Anti-Infective Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cathelicidins/metabolism , Immune System/drug effects , Triterpenes/pharmacology , Antimicrobial Cationic Peptides , Humans , Neutrophils/drug effects
18.
J Vis Exp ; (101): e53048, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26273844

ABSTRACT

Microdialysis is a commonly used technique in neuroscience research. Therefore commercial probes are in great demand to monitor physiological, pharmacological and pathological changes in cerebrospinal fluid. Unfortunately, commercial probes are expensive for research groups in public institutions. In this work, a probe assembly is explained in detail to build a reliable, concentric, custom-made microdialysis probe for less than $10. The microdialysis probe consists of a polysulfone membrane with a molecular cut-off of 30 kDa. Probe in vitro recoveries of substances with different molecular weight (in the range of 100-1,600 Da) and different physicochemical properties are compared. The probe yields an in vitro recovery of approximately 20% for the small compounds glucose, lactate, acetylcholine and ATP. In vitro recoveries for neuropeptides with a molecular weight between 1,000-1,600 Da amount to 2-6%. Thus, while the higher molecular weight of the neuropeptides lowered in vitro recovery values, dialysis of compounds in the lower range (up to 500 Da) of molecular weights has no great impact on the in vitro recovery rate. The present method allows utilization of a dialysis membrane with other cut-off value and membrane material. Therefore, this custom-made probe assembly has the advantage of sufficient flexibility to dialyze substances in a broad molecular weight range. Here, we introduce a microdialysis probe with an exchange length of 2 mm, which is applicable for microdialysis in mouse and rat brain regions. However, dimensions of the probe can easily be adapted for larger exchange lengths to be used in larger animals.


Subject(s)
Microdialysis/instrumentation , Animals , Brain Chemistry , Equipment Design/methods , Glucose/analysis , Lactic Acid/analysis , Mice , Microdialysis/economics , Microdialysis/methods , Molecular Weight , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Neuropeptides/analysis , Polymers/chemistry , Rats , Sulfones/chemistry
19.
Plant Mol Biol ; 87(4-5): 459-71, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25647426

ABSTRACT

In nature, plants are often exposed to combinations of different stresses at the same time, while in many laboratory studies of molecular stress induction phenomena, single stress responses are analyzed. This study aims to identify the common (i.e. more general stress-responsive) and the stress-specific adjustments of the leaf proteome of wild barley to two often co-occurring stress phenomena, i.e. in response to (long-term) drought acclimation (DA) or to (transient) heat stress (HS). In addition, we analyzed those alterations which are specific for the combination of both stresses. Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry with a 1.5 threshold value of changes in relative protein contents. DA resulted in specific upregulation of proteins with cell detoxification functions, water homeostasis maintenance, amino acids synthesis and lipid metabolism and distinct forms of heat shock proteins (HSPs) and proteins with chaperon functions while proteins related to nitrogen metabolism were downregulated. This response was distinguished from the response to transient HS, which included upregulation of a broad range of HSP products. The common response to both stressors revealed upregulation of additional forms of HSPs and the downregulation of enzymes of the photosynthetic apparatus and chlorophyll binding proteins. The simultaneous exposure to both stress conditions resulted mostly in a combination of both stress responses and to unique abundance changes of proteins with yet unclear functions.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Hordeum/metabolism , Hordeum/physiology , Hot Temperature , Plant Leaves/metabolism , Plant Leaves/physiology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Proteomes ; 3(2): 74-88, 2015 May 13.
Article in English | MEDLINE | ID: mdl-28248263

ABSTRACT

Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements.

SELECTION OF CITATIONS
SEARCH DETAIL
...