Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792809

ABSTRACT

Despite great advances in the treatment of oncological diseases, the development of medical technologies to prevent or reduce complications of therapy, in particular, those associated with surgery and the introduction of antibiotics, remains relevant. The aim of this study is to evaluate the effectiveness of the use of autoprobiotics based on indigenous non-pathogenic strains of Enterococcus faecium and Enterococcus hirae as a personalized functional food product (PFFP) in the complex therapy of colorectal cancer (CRC) in the early postoperative period. A total of 36 patients diagnosed with CRC were enrolled in the study. Study group A comprised 24 CRC patients who received autoprobiotic therapy in the early postoperative period, while the control group C included 12 CRC patients without autoprobiotic therapy. Prior to surgery and between days 14 and 16 post-surgery, comprehensive evaluations were conducted on all patients, encompassing the following: stool and gastroenterological complaints analysis, examination of the gut microbiota (bacteriological study, quantitative polymerase chain reaction, metagenome analysis), and analysis of interleukins in the serum. Results: The use of autoprobiotics led to a decrease in dyspeptic complaints after surgery. It was also associated with the absence of postoperative complications, did not cause any side effects, and led to a decrease in the level of pro-inflammatory cytokines (IL-6 and IL-18) in the blood serum. The use of autoprobiotics led to positive changes in the structure of escherichia and enterococci populations, the elimination of Parvomonas micra and Fusobacterium nucleatum, and a decrease in the quantitative content of Clostridium perfringens and Akkermansia muciniphila. Metagenomic analysis (16S rRNA) revealed an increase in alpha diversity. Conclusion: The introduction of autoprobiotics in the postoperative period is a highly effective and safe approach in the complex treatment of CRC. Future studies will allow the discovery of additional fine mechanisms of autoprobiotic therapy and its impact on the digestive, immune, endocrine, and neural systems.

2.
Microorganisms ; 11(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894243

ABSTRACT

Pathogenic microbes use arginine-metabolizing enzymes as an immune evasion strategy. In this study, the impact of streptococcal arginine deiminase (ADI) on the human peripheral blood T lymphocytes function in vitro was studied. The comparison of the effects of parental strain (Streptococcus pyogenes M49-16) with wild type of ArcA gene and its isogenic mutant with inactivated ArcA gene (Streptococcus pyogenes M49-16delArcA) was carried out. It was found that ADI in parental strain SDSC composition resulted in a fivefold decrease in the arginine concentration in human peripheral blood mononuclear cell (PBMC) supernatants. Only parental strain SDSCs suppressed anti-CD2/CD3/CD28-bead-stimulated mitochondrial dehydrogenase activity and caused a twofold decrease in IL-2 production in PBMC. Flow cytometry analysis revealed that ADI decreased the percentage of CM (central memory) and increased the proportion of TEMRA (terminally differentiated effector memory) of CD4+ and CD8+ T cells subsets. Enzyme activity inhibited the proliferation of all CD8+ T cell subsets as well as CM, EM (effector memory), and TEMRA CD4+ T cells. One of the prominent ADI effects was the inhibition of autophagy processes in CD8+ CM and EM as well as CD4+ CM, EM, and TEMRA T cell subsets. The data obtained confirm arginine's crucial role in controlling immune reactions and suggest that streptococcal ADI may downregulate adaptive immunity and immunological memory.

3.
Immunobiology ; 228(2): 152344, 2023 03.
Article in English | MEDLINE | ID: mdl-36746072

ABSTRACT

Endothelial cells (EC) are active participants in the inflammation process. During the infection, the change in endothelium properties provides the leukocyte infiltrate formation and restrains pathogen dissemination due to coagulation control. Pathogenic microbes are able to change the endothelium properties and functions in order to invade the bloodstream and disseminate in the host organism. Arginine deiminase (ADI), a bacterial arginine-hydrolyzing enzyme, which causes the amino acid deficiency, important for endothelium biology. Previous research implicates altered metabolism of arginine in the development of endothelial dysfunction and inflammation. It was shown that arginine deficiency, as well as overabundance affects the balance of mechanical target of rapamycin (mTOR)/S6 kinase (S6K) pathway, arginase and endothelial nitric oxide synthase (eNOS) resulted in reactive oxygen species (ROS) production and EC activation. ADI creating a deficiency of arginine can interfere cellular arginine-dependent processes. Thus, this study was aimed at investigation of the influence of streptococcal ADI on the metabolism and inflammations of human umbilical vein endothelial cells (HUVEC). The action of ADI was studied by comparing the effect Streptococcus pyogenes M49-16 paternal strain expressing ADI and its isogenic mutant M49-16delArcA with the inactivated gene ArcA. Based on comparison of the parental and mutant strain effects, it can be concluded, that ADI suppressed mTOR signaling pathway and enhanced autophagy. The processes failed to return to the basic level with arginine supplement. Our study also demonstrates that ADI suppressed endothelial proliferation, disrupted actin cytoskeleton structure, increased phospho-NF-κB p65, CD62P, CD106, CD54, CD142 inflammatory molecules expression, IL-6 production and lymphocytes-endothelial adhesion. In spite of the ADI-mediated decrease in arginine concentration in the cell-conditioned medium, the enzyme enhanced the production of nitric oxide in endothelial cells. Arginine supplementation rescued proliferation, actin cytoskeleton structure, brought NO production to baseline and prevented EC activation. Additional evidence for the important role of arginine bioavailability in the EC biology was obtained. The results allow us to consider bacterial ADI as a pathogenicity factor that can potentially affect the functions of endothelium.


Subject(s)
Arginine , Sirolimus , Humans , Arginine/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Endothelium/metabolism , TOR Serine-Threonine Kinases/metabolism , Inflammation , Autophagy
4.
Probiotics Antimicrob Proteins ; 15(5): 1169-1179, 2023 10.
Article in English | MEDLINE | ID: mdl-35904731

ABSTRACT

The study was devoted to the comparison of the probiotic effect of enterococcal Enterococcus faecium L3 to the antibiotic enramycin as a chicken feed additive. Two hundred and sixteen chickens were divided into three groups and tested by different parameters including weight gain, food consumption, blood biochemistry, immunology, and caecal microbiome at two checkpoints, 21 and 39 days after birth. By the end of the experiment, a group of chickens getting probiotic demonstrated weight gain of more than 100 g at the average relative to the control group with no additive in animal feed (P < 0.05). Blood serum biochemistry showed a significant increase in HDL level (P < 0.05) relative to the control group. The 16S RNA sequencing demonstrated the growth abundance of Lachnospiraceae and the decrease of Proteobacteria in probiotic fed group. On the contrary, the antibiotic fed group showed a noticeable increase in the abundance of Proteobacteria which included the genus Salmonella. Thus, probiotic E. faecium L3 being added to chicken food as a single additive may be considered as a possible replacement of antibiotic enramycin.


Subject(s)
Enterococcus faecium , Microbiota , Probiotics , Animals , Chickens/microbiology , Anti-Bacterial Agents/pharmacology , Probiotics/pharmacology , Animal Feed/analysis
5.
Microorganisms ; 10(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36422363

ABSTRACT

In this study, we investigated the effect of three different probiotics, namely, a combination of Lactobacillus acidophilus (LA-5) and Bifidobacterium animalis subsp. lactis (BB-12), Saccharomyces boulardii, and Enterococcus faecium L3 on myocardial infarct size in rats with diet-induced obesity (DIO) and chemically-induced colitis (CIC). Potential associations between the effects of probiotics on myocardial ischemia-reperfusion injury and gut microbiome patterns as well as the serum levels of pro- and anti-inflammatory cytokines, lipopolysaccharide, and short chain fatty acids were also studied. Intragastric administration of lyophilized Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis at a dose of 1.2 × 108 CFU/mL for 15 days resulted in myocardial infarct size reduction in rats with DIO, CIC, and antibiotic-induced dysbiosis. This cardioprotective effect was associated with specific changes in cytokine concentrations, namely reduced levels of IL-1ß, TNF-α, IL-2, and IL-8. At the same time, the use of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis was accompanied by a significant reduction in lipopolysaccharide level, suggesting normalization of intestinal epithelial barrier permeability. However, the cardioprotective effect of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis is not secondary to improved healing of the intestinal mucosa in CIC, as evidenced by the lack of difference in histopathological scores.

6.
Microorganisms ; 10(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36013992

ABSTRACT

The features of gut microbiota in metabolic syndrome (MS) and ways to correct it using autoprobiotics, based on indigenous bacteria obtained from fecal samples of the host, remain unexplored. The aim of the study was to investigate the effectiveness of an indigenous consortium (IC) of fecal bacteria in treatment of patients with MS. The study was carried out on 36 patients with MS, manifested with abdominal obesity, eating disorders, dyslipidemia, and hypertension. The control group was formed by 20 healthy volunteers. Samples of IC and gut microbiota content were examined by qPCR and metagenome (16S rRNA) analysis before and after therapy. The decrease in anthropometric parameters of obesity, liver enzyme level correction, reduction in C reactive protein and triglyceride concentrations were revealed after IC usage. The decrease in genera Bifidobacterium, Enterobacter, Paraprevotella, and Prevotella, as well as an increase in Bacteroides fragilis and Oscillospira spp. populations were shown after consumption of IC. A negative correlation between the quantity of B. fragilis and the anthropometric parameters of obesity (r = -0.48) and C reactive protein level (r = -0.36) in serum was established. Thus, IC can be considered as a potential functional personified product for the therapy of MS.

7.
Microorganisms ; 9(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806341

ABSTRACT

In recent years, great interest has arisen in the use of autoprobiotics (indigenous bacteria isolated from the organism and introduced into the same organism after growing). This study aimed to evaluate the effects of indigenous bifidobacteria on intestinal microbiota and digestive enzymes in a rat model of antibiotic-associated dysbiosis. Our results showed that indigenous bifidobacteria (the Bf group) accelerate the disappearance of dyspeptic symptoms in rats and prevent an increase in chyme mass in the upper intestine compared to the group without autoprobiotics (the C1 group), but significantly increase the mass of chyme in the colon compared to the C1 group and the control group (healthy animals). In the Bf group in the gut microbiota, the content of opportunistic bacteria (Proteus spp., enteropathogenic Escherichia coli) decreased, and the content of some beneficial bacteria (Bifidobacterium spp., Dorea spp., Blautia spp., the genus Ruminococcus, Prevotella, Oscillospira) changed compared to the control group. Unlike the C1 group, in the Bf group there was no decrease in the specific activities of maltase and alkaline phosphatase in the mucosa of the upper intestine, but the specific activity of maltase was decreased in the colon chyme compared to the control and C1 groups. In the Bf group, the specific activity of aminopeptidase N was reduced in the duodenum mucosa and the colon chyme compared to the control group. We concluded that indigenous bifidobacteria can protect the microbiota and intestinal digestive enzymes in the intestine from disorders caused by dysbiosis; however, there may be impaired motor function of the colon.

8.
Front Microbiol ; 11: 1877, 2020.
Article in English | MEDLINE | ID: mdl-32973697

ABSTRACT

Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.

9.
Scand J Immunol ; 89(2): e12734, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30471128

ABSTRACT

Expression of gene of arginine deiminase (AD) allows adaptation of Streptococcus pyogenes to adverse environmental conditions. AD activity can lead to L-arginine deficiency in the host cells' microenvironment. Bioavailability of L-arginine is an important factor regulating the functions of the immune cells in mammals. By introducing a mutation into S pyogenes M46-16, we obtained a strain with inactivated arcA/sagp gene (M49-16 delArcA), deficient in AD. This allowed elucidating the function of AD in pathogenesis of streptococcal infection. The virulence of the parental and mutant strains was examined in a murine model of subcutaneous streptococcal infection. L-arginine concentration in the plasma of mice infected with S pyogenes M49-16 delArcA remained unchanged in course of the entire experiment. At the same time mice infected with S pyogenes M49-16 demonstrated gradual diminution of L-arginine concentration in the blood plasma, which might be due to the activity of streptococcal AD. Mice infected with S pyogenes M49-16 delArcA demonstrated less intensive bacterial growth in the primary foci and less pronounced bacterial dissemination as compared with animals infected with the parental strain S pyogenes M46-16. Similarly, thymus involution, alterations in apoptosis, thymocyte subsets and Treg cells differentiation were less pronounced in mice infected with S pyogenes M49-16 delArcA than in those infected with the parental strain. The results obtained showed that S pyogenes M49-16 delArcA, unable to produce AD, had reduced virulence in comparison with the parental S pyogenes M49-16 strain. AD is an important factor for the realization of the pathogenic potential of streptococci.


Subject(s)
Bacterial Proteins/metabolism , Hydrolases/metabolism , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , T-Lymphocytes/physiology , Thymus Gland/pathology , Animals , Apoptosis , Arginine/metabolism , Atrophy , Bacterial Proteins/genetics , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Hydrolases/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mutagenesis, Site-Directed , Mutation/genetics , Streptococcal Infections/immunology , Streptococcus pyogenes/pathogenicity , Virulence
10.
Front Microbiol ; 9: 1869, 2018.
Article in English | MEDLINE | ID: mdl-30258408

ABSTRACT

Human microbiota is a complex consortium of microorganisms involved in the proper functioning of almost every system of the organism. Majority of the human diseases are associated with the development of intestinal dysbiosis. Dysbiotic condition or dysbiosis is a key pathogenic condition causing many severe infectious or non-infectious diseases. Rapid return to the original microbiota in many cases leads to the fast recovery from the disease. However, the optimal way of the treatment of dysbiosis is still under the discussion. Recently we have developed a method of autoprobiotics based on using isolated indigenous bacteria for improving of microbiota condition. The method based on feeding the patients with bacterial products grown from their personal, genetically characterised strains have been successfully tested in clinic on patients with IBS or chronic pneumonia. In present study we tried to evaluate technology employing autoprobiotic bacteria belonging to different species employing the rat model of antibiotic induced dysbiosis. Six experimental groups of animals after taking antibiotics were treated with different variants of autoprobiotics (lactobacillus, bifidobacteria, enterococcus, their mixture, fecal microbiota, or anaerobically grown complex of indigenous microbiota) prepared for each of them before the development of dysbiosis. Judging by the multiple parameters including metagenomics analysis of microbiota, immune status and microbiota content of the animals with dysbiosis relatively to control group, the most pronounced positive changes were provided by autoprobiotics based on enterococci, bifidobacteria or the consortium of indigenous bacteria grown under anaerobic conditions. These groups of autoprobiotics were delivering the most effective restoration of the original microbiota content and significant anti-inflammatory reaction of the immune system.

11.
Genome Announc ; 5(10)2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28280035

ABSTRACT

Serratia marcescens is a frequent cause of health care-associated infections and has led to multiple outbreaks. Here, we report the draft genome of a multidrug-resistant S. marcescens strain 189 which was isolated in 2012 as a predominant clone in a neonatal hospital in Kemerovo.

12.
Genome Announc ; 4(1)2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26868396

ABSTRACT

Enterococcus faecium 58m is a putative ancient nonpathogenic strain isolated from the intestinal content of an adult woolly mammoth (Mammuthus primigenius). Here, we report its draft genome sequence, consisting of 60 contigs. In silico genomic analysis was performed to determine the genetic features and pathogenic potential of this microorganism.

13.
Genome Announc ; 4(1)2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26823581

ABSTRACT

We report here the draft genome sequence of the bacteriocin producer Enterococcus faecium strain L-3, isolated from a probiotic preparation, Laminolact, which is widely used in the Russian Federation. The draft genome sequence is composed of 74 contigs for a total of 2,643,001 bp, with 2,646 coding genes. Five clusters for bacteriocin production were found.

14.
Biosci Microbiota Food Health ; 32(2): 41-9, 2013.
Article in English | MEDLINE | ID: mdl-24936361

ABSTRACT

Lactic acid bacteria (LAB) are often used for prevention and treatment of dysbiosis. However, the action of various strains of LAB on metabolism and digestion under these conditions are poorly understood. The purpose of this study was to investigate the influence of probiotic LAB on metabolism, digestion and microbiota in animals with dysbiosis. After administration of ampicillin and metronidazole male Wistar rats, were fed products containing Enterococcus faecium L3 (E.f.), Lactobacillus fermentum Z (L.f.) or milk (control 1). Animals in control group 2 were fed milk, after water instead of antibiotics. Dyspeptic symptoms disappeared after administration of probiotic compared with control 1. At the end of the experiment, an increase in the content of enterococci and lactobacilli in the proximal part of the small intestine was found in the animals treated with E.f. and L.f., respectively. After the introduction of probiotic enterococci, the quantity of lactobacilli and bifidobacteria in the intestines of rats increased, and the content of Klebsiella spp. and Escherichia coli decreased in comparison with the control group 1 and the group fed lactobacilli. The activity of alkaline phosphatase and aspartate transaminase was greater in blood serum of rats with dysbiosis receiving milk and lactobacilli. Intestinal alkaline phosphatase activity increased in the epithelium and chyme in the jejunum of the animals treated with L. f. and in the chyme only in the animals treated with E. f. Thus, the specific effects of different strains of probiotic LAB on the microbiota, and on metabolism and digestion of various nutrients were demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...