Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(3-2): 035209, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849111

ABSTRACT

Laser-direct-drive fusion target designs with solid deuterium-tritium (DT) fuel, a high-Z gradient-density pusher shell (GDPS), and a Au-coated foam layer have been investigated through both 1D and 2D radiation-hydrodynamic simulations. Compared with conventional low-Z ablators and DT-push-on-DT targets, these GDPS targets possess certain advantages of being instability-resistant implosions that can be high adiabat (α≥8) and low hot-spot and pusher-shell convergence (CR_{hs}≈22 and CR_{PS}≈17), and have a low implosion velocity (v_{imp}<3×10^{7}cm/s). Using symmetric drive with laser energies of 1.9 to 2.5MJ, 1D lilac simulations of these GDPS implosions can result in neutron yields corresponding to ≳50-MJ energy, even with reduced laser absorption due to the cross-beam energy transfer (CBET) effect. Two-dimensional draco simulations show that these GDPS targets can still ignite and deliver neutron yields from 4 to ∼10MJ even if CBET is present, while traditional DT-push-on-DT targets normally fail due to the CBET-induced reduction of ablation pressure. If CBET is mitigated, these GDPS targets are expected to produce neutron yields of >20MJ at a driven laser energy of ∼2MJ. The key factors behind the robust ignition and moderate energy gain of such GDPS implosions are as follows: (1) The high initial density of the high-Z pusher shell can be placed at a very high adiabat while the DT fuel is maintained at a relatively low-entropy state; therefore, such implosions can still provide enough compression ρR>1g/cm^{2} for sufficient confinement; (2) the high-Z layer significantly reduces heat-conduction loss from the hot spot since thermal conductivity scales as ∼1/Z; and (3) possible radiation trapping may offer an additional advantage for reducing energy loss from such high-Z targets.

2.
Phys Rev E ; 108(3-2): 035206, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849196

ABSTRACT

Nonlocal electron transport is important for understanding laser-target coupling for laser-direct-drive (LDD) inertial confinement fusion (ICF) simulations. Current models for the nonlocal electron mean free path in radiation-hydrodynamic codes are based on plasma-physics models developed decades ago; improvements are needed to accurately predict the electron conduction in LDD simulations of ICF target implosions. We utilized time-dependent density functional theory (TD-DFT) to calculate the electron stopping power (SP) in the so-called conduction-zone plasmas of polystyrene in a wide range of densities and temperatures relevant to LDD. Compared with the modified Lee-More model, the TD-DFT calculations indicated a lower SP and a higher stopping range for nonlocal electrons. We fit these electron SP calculations to obtain a global analytical model for the electron stopping range as a function of plasma conditions and the nonlocal electron kinetic energy. This model was implemented in the one-dimensional radiation-hydrodynamic code lilac to perform simulations of LDD ICF implosions, which are further compared with simulations by the standard modified Lee-More model. Results from these integrated simulations are discussed in terms of the implications of this TD-DFT-based mean-free-path model to ICF simulations.

3.
Phys Rev E ; 107(2-2): 025206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932569

ABSTRACT

Wetted-foam layers are of significant interest for inertial-confinement-fusion capsules, due to the control they provide over the convergence ratio of the implosion and the opportunity this affords to minimize hydrodynamic instability growth. However, the equation of state for fusion-relevant foams are not well characterized, and many simulations rely on modeling such foams as a homogeneous medium with the foam average density. To address this issue, an experiment was performed using the VULCAN Nd:glass laser at the Central Laser Facility. The aim was to measure the principal Hugoniot of TMPTA plastic foams at 260mg/cm^{3}, corresponding to the density of liquid DT-wetted-foam layers, and their "hydrodynamic equivalent" capsules. A VISAR was used to obtain the shock velocity of both the foam and an α-quartz reference layer, while streaked optical pyrometry provided the temperature of the shocked material. The measurements confirm that, for the 20-120 GPa pressure range accessed, this material can indeed be well described using the equation of state of the homogeneous medium at the foam density.

4.
Phys Rev E ; 104(4-2): 045207, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781542

ABSTRACT

A combined approach to study cold rarefied matter is introduced that includes a semianalytical method based on the free-energy minimization and ab initio calculations based on the finite-temperature density-functional theory. The approach is used to calculate the ionization state of hydrocarbon (CH) under the shock-release conditions in inertial confinement fusion. The dielectric constant of CH is calculated using the Kubo-Greenwood formulation and contribution from atomic polarizabilities is found to be as important as the free-electron contribution. Using the ionization state and dielectric constant, the electron density profile in the rarefaction wave of the shock-release plasma is obtained.

5.
Nat Commun ; 11(1): 1989, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32332785

ABSTRACT

Superdense plasmas widely exist in planetary interiors and astrophysical objects such as brown-dwarf cores and white dwarfs. How atoms behave under such extreme-density conditions is not yet well understood, even in single-species plasmas. Here, we apply thermal density functional theory to investigate the radiation spectra of superdense iron-zinc plasma mixtures at mass densities of ρ = 250 to 2000 g cm-3 and temperatures of kT = 50 to 100 eV, accessible by double-shell-target implosions. Our ab initio calculations reveal two extreme atomic-physics phenomena-firstly, an interspecies radiative transition; and, secondly, the breaking down of the dipole-selection rule for radiative transitions in isolated atoms. Our first-principles calculations predict that for superdense plasma mixtures, both interatomic radiative transitions and dipole-forbidden transitions can become comparable to the normal intra-atomic Kα-emission signal. These physics phenomena were not previously considered in detail for extreme high-density plasma mixtures at super-high energy densities.

6.
Phys Rev Lett ; 122(12): 125701, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30978067

ABSTRACT

A multifaceted first-principles approach utilizing density functional theory, evolutionary algorithms, and lattice dynamics was used to construct the phase diagram of silicon up to 4 TPa and 26 000 K. These calculations predicted that (i) an anomalous sequence of face-centered cubic to body-centered cubic to simple cubic crystalline phase transitions occur at pressures of 2.87 and 3.89 TPa, respectively, along the cold curve, (ii) the orthorhombic phases of Imma and Cmce-16 appear on the phase diagram only when the anharmonic contribution to the Gibbs free energy is taken into account, and (iii) a substantial change in the slope of the principal Hugoniot is observed if the anharmonic free energy of the cubic diamond phase is considered.

7.
J Comput Chem ; 25(3): 368-74, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14696071

ABSTRACT

A finite basis set particularly adapted for solving the Hartree-Fock equation for diatomic molecules in prolate spheroidal coordinates has been constructed. These basis functions have been devised as products of B-splines times associated Legendre polynomials. Due to the large number of B-splines, the resulting set of eigenfunctions is amply distributed over excited states. This gives the possibility of using these basis sets to calculate sums over excited states, appearing in various orders of perturbation theory. As an illustration, the second-order corrections to the ground-state energy of some atoms and diatomic molecules with closed electron shells have been calculated.

SELECTION OF CITATIONS
SEARCH DETAIL
...