Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Factors ; 65(6): 1183-1198, 2023 09.
Article in English | MEDLINE | ID: mdl-34886710

ABSTRACT

OBJECTIVE: Investigate the effects of scheduling task complexity on human performance for novice schedulers creating spaceflight timelines. BACKGROUND: Future astronauts will be expected to self-schedule, yet will not be experts in creating timelines that meet the complex constraints inherent to spaceflight operations. METHOD: Conducted a within-subjects experiment to evaluate scheduling task performance in terms of scheduling efficiency, effectiveness, workload, and situation awareness while manipulating scheduling task complexity according to the number of constraints and type of constraints. RESULTS: Each participant (n = 15) completed a set of scheduling problems. Results showed main effects of the number of constraints and type of constraint on efficiency, effectiveness, and workload. Significant interactions were observed in situation awareness and workload for certain types of constraints. Results also suggest that a lower number of constraints may be manageable by novice schedulers when compared to scheduling activities without constraints. CONCLUSION: Results suggest that novice schedulers' performance decreases with a high number of constraints, and future scheduling aids may need to target a specific type of constraint. APPLICATION: Knowledge on the effect of scheduling task complexity will help design scheduling systems that will enable self-scheduling for future astronauts. It will also inform other domains that conduct complex scheduling, such as nursing and manufacturing.


Subject(s)
Space Flight , Workload , Humans , Task Performance and Analysis
2.
Hum Factors ; 65(6): 1130-1141, 2023 09.
Article in English | MEDLINE | ID: mdl-35927966

ABSTRACT

OBJECTIVE: This project quantifies operationally relevant measures of flight performance and workload in a high-fidelity long-duration spaceflight analog, longitudinally across mission duration, using a portable simulation platform. BACKGROUND: Real-time performance measures allow for the objective assessment of task performance and the timely identification of performance degradations. METHODS: Measures of flight performance on a piloted lunar lander task were collected on 32 total crewmembers across 8 simulated space missions of 45 days each (623 total sessions). RESULTS: Mission duration demonstrated a significant effect on measures of flight performance across all campaigns. Flight measures showed a general pattern of peaking in accuracy during the middle-late quartiles of overall mission time, then degrading again towards baseline. On the workload measure, however, a general linear decrease in workload consistent with progressive task learning was observed in both campaigns. CONCLUSION: This investigation demonstrated the disruptive effect of time in mission on some, but not all, aspects of task performance. While mission interval differentially impacted measures of flight accuracy, workload, by contrast, seemed to steadily decrease with in-mission time. APPLICATION: While more work is needed, the observed discrepancy between progression of flight performance and workload assessment highlights the importance of sensitive and specific measurement tools for the tracking of distinct performance metrics.


Subject(s)
Space Flight , Humans , Task Performance and Analysis , Workload , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...