Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 29(8): 1074-81, 2006 May.
Article in English | MEDLINE | ID: mdl-16830721

ABSTRACT

Five end-capped octadecyl RP stationary phases, among which one was a polar embedded stationary phase, were tested for the analysis of benzoic acid derivatives using two mobile phases with or without addition of formic acid (water pH was measured by a common approach; pH of water with addition of formic acid was 3.0 and without formic acid 5.8). The influence of mobile-phase pH on the retention of benzoic acid derivatives was under study. Consequently, Purospher-STAR and Alltima columns provided symmetrical peaks for benzoic acid derivatives at pH 3.0 and also at pH 5.8. Reprosil and Symmetry stationary phases showed poor peak shapes at higher pH of the mobile phase. Differences between the tested columns may be caused by surface heterogeneity. Another reason may be the presence of some atoms creating additional adsorption sites on the surface of Reprosil and Symmetry stationary phases. This can lead to enhanced silanol activity resulting in peak tailing. The addition of formic acid into the mobile phase improved peak shapes. The polar embedded C18 stationary-phase Synergi-Fusion-RP appeared as not a suitable column for the analysis of benzoic acid derivatives. Synergi-Fusion-RP provided asymmetrical peaks even if formic acid was added into the mobile phase.

2.
J Sep Sci ; 28(18): 2468-76, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16405176

ABSTRACT

Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.


Subject(s)
Chromatography, High Pressure Liquid/methods , Parabens/analysis , Plant Extracts/analysis , Plants/metabolism , Polymers/chemistry , Acetic Acid/chemistry , Acetonitriles/pharmacology , Hydroxybenzoates/chemistry , Melissa/metabolism , Methanol/chemistry , Models, Chemical , Parabens/isolation & purification , Solvents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...