Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(10): 8975-8984, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28248087

ABSTRACT

Free-standing iodine-doped composite samples of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with carbon nanotubes (NTs) showed thermoelectric (TE) power factors (PFs) up to 33 µW·m-1·K-2 after optimizing multiple factors, including: (1) sample fabrication solvent, (2) doping time, (3) average MEH-PPV molecular weight, (4) NT fraction in the composite, and (5) use of single-wall versus multi-wall nanotubes (SWNT and MWNT, respectively). Composite fabrication from halogenated solvents gave the best TE performance after iodine doping times of 2-4 h; performance drops substantially in ∼20 h doped samples. TE performance dropped after at least 24 h of removal from iodine vapor but was fully restored upon re-exposure to the dopant. Longer-chain MEH-PPV gave not only mechanically stronger films but also higher PFs in doped SWNT composites. MWNT composites gave low PFs, attributed to poor NT dispersion. Scanning electron microscopy showed increasingly extensive network formation as NT fraction increased in the composites; this phase separation provides charge transport pathways that improve thermoelectric PFs. The results support a strategy of producing phase-separated materials having both electrical conduction enhanced regions and Seebeck thermopower retaining regions to maximize organic TE response.

2.
Chemphyschem ; 6(2): 267-76, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15751349

ABSTRACT

Photochemical and photophysical properties were investigated for poly(arylenevinylene)s containing a flexible biphenyl "hinge" unit by applying one-photon (OP) and two-photon (TP) excitation to explore excited-state properties. The poly(arylenevinylene)s were poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(4,4'-dihexyloxy-3,3'-biphenylenevinylene)] (1), poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-dihexyloxy-3,3'-biphenylenevinylene)] (2), and poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-biphenylenevinylene)] (3). Effective emission quantum yields and related photonic properties were evaluated on a realistic per-chromophore basis using effective conjugation lengths based on the Strickler-Berg relationship. Intramolecular photocyclization was deduced to occur in the one case where the biphenyl molecular connectivity permitted the reaction, based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), heteronuclear multiple-quantum coherence (HMQC)-NMR, and gel-permeation chromatography (GPC) results. The various photoprocesses could be induced by either OP or TP excitation, though the first excited singlet state is the photoactive state. The higher excitation energy of the TP excited state favors indirect population of the S, state by electronic coupling between the TP and OP excited states [lambda(max)TPE (nm): 726; delta (GM): 1=229, 2=215, 3= 109). Photochemical processes occurring from the lowest OP excited state (S1) could therefore also be indirectly induced by TP excitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...