Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(7): 2455-2463, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29345950

ABSTRACT

In this paper, we investigate electroconvective ion transport at cation exchange membranes with different geometry square-wave structures (line undulations) experimentally and numerically. Electroconvective microvortices are induced by strong concentration polarization once a threshold potential difference is applied. The applied potential required to start and sustain electroconvection is strongly affected by the geometry of the membrane. A reduction in the resistance of approximately 50% can be obtained when the structure size is similar to the mixing layer (ML) thickness, resulting in confined vortices with less lateral motion compared to the case of flat membranes. From electrical, flow, and concentration measurements, ion migration, advection, and diffusion are quantified, respectively. Advection and migration are dominant in the vortex ML, whereas diffusion and migration are dominant in the stagnant diffusion layer. Numerical simulations, based on Poisson-Nernst-Planck and Navier-Stokes equations, show similar ion transport and flow characteristics, highlighting the importance of membrane topology on the resulting electrokinetic and electrohydrodynamic behavior.

2.
Phys Rev Lett ; 116(19): 194501, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27232024

ABSTRACT

Recent investigations have revealed that ion transport from aqueous electrolytes to ion-selective surfaces is subject to electroconvective instability that stems from coupling of hydrodynamics with electrostatic forces. These systems inherently involve fluid density variation set by salinity gradients. However, the coupling between the buoyancy effects and electroconvective instability has not yet been investigated although a wide range of electrochemical systems are naturally prone to these interplaying effects. In this study we thoroughly examine the interplay of gravitational convection and chaotic electroconvection. Our results reveal that buoyant forces can significantly influence the transport rates, otherwise set by electroconvection, when the Rayleigh number Ra of the system exceeds a value Ra∼1000. We show that buoyancy forces can significantly alter the flow patterns in these systems. When the buoyancy acts in the stabilizing direction, it limits the extent of penetration of electroconvection, but without eliminating it. When the buoyancy destabilizes the flow, it alters the electroconvective patterns by introducing upward and downward fingers of respectively light and heavy fluids.

3.
J Colloid Interface Sci ; 446: 67-76, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25660706

ABSTRACT

Many microfluidic and electrochemical applications involve chaotic transport phenomena that arise due to instabilities stemming from coupling of hydrodynamics with ion transport and electrostatic forces. Recent investigations have revealed the contribution of a wide range of spatio-temporal scales in such electro-chaotic systems similar to those observed in turbulent flows. Given that these scales can span several orders of magnitude, significant numerical resolution is needed for accurate prediction of these phenomena. The objective of this work is to assess accuracy and efficiency of commercial software for prediction of such phenomena. We have considered the electroconvective flow induced by concentration polarization near an ion selective surface as a model problem representing chaotic elecrokinetic phenomena. We present detailed comparison of the performance of a general-purpose commercial computational fluid dynamics (CFD) and transport solver against a custom-built direct numerical simulation code that has been tailored to the specific physics of unsteady electrokinetic flows. We present detailed statistics including velocity and ion concentration spectra over a wide range of frequencies as well as time-averaged statistics and computational time required for each simulation. Our results indicate that while accuracy can be guaranteed with proper mesh resolution and avoiding numerical dissipation, commercial solvers are generally at least an order of magnitude slower than custom-built direct numerical simulation codes.

4.
Proc Natl Acad Sci U S A ; 110(21): 8422-6, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23650352

ABSTRACT

Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas-liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stable and optimal interfaces is crucial but rather challenging. Here we present unique superhydrophobic microfluidic devices that allow the presence of stable and controllable microbubbles at the boundary of microchannels. We experimentally and numerically examine the effect of microbubble geometry on the slippage at high resolution. The effective slip length is obtained for a wide range of protrusion angles, θ, of the microbubbles into the flow, using a microparticle image velocimetry technique. Our numerical results reveal a maximum effective slip length, corresponding to a 23% drag reduction at an optimal θ ≈ 10°. In agreement with the simulation results, our measurements correspond to up to 21% drag reduction when θ is in the range of -2° to 12°. The experimental and numerical results reveal a decrease in slip length with increasing protrusion angles when >/~ 10°. Such microfluidic devices with tunable slippage are essential for the amplified interfacial transport of fluids and particles.


Subject(s)
Microbubbles , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Models, Theoretical
5.
Lab Chip ; 12(16): 2922-9, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22722560

ABSTRACT

The compelling need for an efficient supply of gases into liquids or degassing of fluids within confined microchannels triggered our study on membrane assisted microchemical systems. Porous hydrophobic flat/micro-structured polyvinylidene fluoride (PVDF) membranes were fabricated and integrated in a glass G/L contacting microfluidic device with the aid of optical adhesives. The oxygen transport in microchannels, driven by convection and diffusion, was investigated both experimentally and numerically. The effects of intrinsic membrane morphology on the G/L contacting performance of the resultant membranes were studied. The experimental performance of the flat membranes are shown to obey the simulation results with the assumptions of negligible gas phase and membrane mass transfer limitations. Micro-structured membranes revealed apparent slippage and enhanced mass transport rates, and exceeded the experimental performance of the flat membranes.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Oxygen/chemistry , Gases/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Polyvinyls/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...