Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765629

ABSTRACT

Fused filament fabrication (FFF) is a popular additive manufacturing (AM) method for creating thermoplastic parts with intricate geometrical designs. Pure thermoplastic materials utilized in FFF, whose polymeric matrix is reinforced with other materials, such as carbon fibers (CFs), introduce products with advanced mechanical properties. However, since not all of these materials are biodegradable, the need for recycling and reuse immediately emerges to address the significant problem of how to dispose of their waste. The proposed study evaluates the printability, surface morphology and in vitro toxicity of two thermoplastic-based composite materials commonly used in wearable device manufacturing to provide enhanced properties and functionalities, making them suitable for various applications in the field of wearable devices. Tritan Copolyester TX1501 with 7.3% chopped CFs (cCFs) and Polyamide 12 (PA12) with 8.6%cCFs and 7.5% iron Magnetic Nanoparticles (MNPs)-Fe4O3 were used in the discrete ascending cycles of recycling, focusing on the surface quality performance optimization of the printed parts. Through stereoscopy evaluation, under-extrusion, and over-extrusion defects, as well as non-uniform material flow, are assessed in order to first investigate the influence of various process parameters' application on the printing quality of each material and, second, to analyze the optimal value fluctuation of the printing parameters throughout the recycling cycles of the materials. The results indicate that after applying certain adjustments to the main printing parameter values, the examined recycled reinforced materials are still effectively 3D printed even after multiple cycles of recycling. A morphology examination using scanning electron microscope (SEM) revealed surface alterations, while a cytotoxicity assessment revealed the adverse effects of both materials in the form of cell viability and the release of proinflammatory cytokines in the cell culture medium.

2.
Polymers (Basel) ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235900

ABSTRACT

Bi-material composite structures with continuous fibers embedded on polymer substrates exhibit self-morphing under thermal stimulus induced by the different coefficients of thermal expansion (CTE) between the two constituent materials. In this study, a series of such structures are investigated in terms of fiber patterns and materials to achieve programmable and reversible transformations that can be exploited for thermal management applications. Stemming from this investigation's results, an axial cooling fan prototype is designed and fabricated with composite blades that passively alter their shape, specifically their curvature and twist angle, under different operating temperatures. A series of computational fluid dynamics (CFD) simulations are performed, subjecting the fan's geometry to different flow temperatures to measure differences in airflow deriving from the induced shape transformations. Corresponding experimental trials are additionally performed, aiming to validate the simulation results. The results indicate the potential of utilizing bilayer self-morphing configurations for the fabrication of smart components for cooling purposes.

3.
Polymers (Basel) ; 14(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160460

ABSTRACT

A polyamide (PA) 12-based thermoplastic composite was modified with carbon nanotubes (CNTs), CNTs grafted onto chopped carbon fibers (CFs), and graphene nanoplatelets (GNPs) with CNTs to improve its thermal conductivity for application as a heat sink in electronic components. The carbon-based nanofillers were examined by SEM and Raman. The laser flash method was used to measure the thermal diffusivity in order to calculate the thermal conductivity. Electrical conductivity measurements were made using a Keithley 6517B electrometer in the 2-point mode. The composite structure was examined by SEM and micro-CT. PA12 with 15 wt% of GNPs and 1 wt% CNTs demonstrated the highest thermal conductivity, and its processability was investigated, utilizing sequential interdependence tests to evaluate the composite material behavior during fused filament fabrication (FFF) 3D printing processing. Through this assessment, selected printing parameters were investigated to determine the optimum parametric combination and processability window for the composite material, revealing that the selected composition meets the necessary criteria to be processable with FFF.

SELECTION OF CITATIONS
SEARCH DETAIL