Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 23(8): 986-94, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20799371

ABSTRACT

The desire to visualize noninvasively physiological processes at high temporal resolution has been a driving force for the development of MRI since its inception in 1973. In this article, we describe a unique method for real-time MRI that reduces image acquisition times to only 20 ms. Although approaching the ultimate limit of MRI technology, the method yields high image quality in terms of spatial resolution, signal-to-noise ratio and the absence of artifacts. As proposed previously, a fast low-angle shot (FLASH) gradient-echo MRI technique (which allows for rapid and continuous image acquisitions) is combined with a radial encoding scheme (which offers motion robustness and moderate tolerance to data undersampling) and, most importantly, an iterative image reconstruction by regularized nonlinear inversion (which exploits the advantages of parallel imaging with multiple receiver coils). In this article, the extension of regularization and filtering to the temporal domain exploits consistencies in successive data acquisitions and thereby enhances the degree of radial undersampling in a hitherto unexpected manner by one order of magnitude. The results obtained for turbulent flow, human speech production and human heart function demonstrate considerable potential for real-time MRI studies of dynamic processes in a wide range of scientific and clinical settings.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Heart/anatomy & histology , Heart/physiology , Humans , Hydrodynamics , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Speech/physiology , Time Factors
2.
Front Neuroanat ; 4: 15, 2010.
Article in English | MEDLINE | ID: mdl-20428499

ABSTRACT

THE HUMAN VISUAL SYSTEM COMPRISES ELONGATED FIBER PATHWAYS THAT REPRESENT A SERIOUS CHALLENGE FOR DIFFUSION TENSOR IMAGING (DTI) AND FIBER TRACTOGRAPHY: while tracking of frontal fiber bundles may be compromised by the nearby presence of air-filled cavities, nerves, and eye muscles, the anatomic courses of the three main fiber bundles of the optic radiation are subject to pronounced inter-subject variability. Here, tractography of the entire visual pathway was achieved in six healthy subjects at high spatial accuracy, that is, at 1.8 mm isotropic spatial resolution, without susceptibility-induced distortions, and in direct correspondence to anatomic MRI structures. Using a newly developed diffusion-weighted single-shot STEAM MRI sequence, we were able to track the thin optic nerve including the nasal optic nerve fibers, which cross the optic chiasm, and to dissect the optic radiation into the anterior ventral bundle (Meyer's loop), the central bundle, and the dorsal bundle. Apart from scientific applications these results in single subjects promise advances in the planning of neurosurgical procedures to avoid unnecessary damage to the visual fiber system.

3.
Magn Reson Med ; 62(5): 1342-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19780170

ABSTRACT

Each k-space segment in multishot diffusion-weighted MRI is affected by a different spatially varying phase which is caused by unavoidable motions and amplified by the diffusion-encoding gradients. A proper image reconstruction therefore requires phase maps for each segment. Such maps are commonly derived from two-dimensional navigators at relatively low resolution but do not offer robust solutions. For example, phase variations in diffusion-weighted MRI of the brain are often characterized by high spatial frequencies. To overcome this problem, an inverse reconstruction method for segmented multishot diffusion-weighted MRI is described that takes advantage of the full k-space data acquired from multiple receiver coils. First, the individual coil sensitivities are determined from the non-diffusion-weighted acquisitions by regularized nonlinear inversion. These coil sensitivities are then used to estimate accurate motion-associated phase maps for each segment by iterative linear inversion. Finally, the coil sensitivities and phase maps serve to reconstruct artifact-free images of the object by iterative linear inversion, taking advantage of the data of all segments. The efficiency of the new method is demonstrated for segmented diffusion-weighted stimulated echo acquisition mode MRI of the human brain.


Subject(s)
Algorithms , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/instrumentation , Humans , Reproducibility of Results , Sensitivity and Specificity , Transducers
4.
J Magn Reson Imaging ; 26(6): 1666-71, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17968898

ABSTRACT

PURPOSE: To develop a rapid stimulated echo acquisition mode (STEAM) MRI technique for "black-blood" imaging of the human heart that overcomes the single-slice limitation and partially compromised blood suppression associated with double inversion-recovery techniques. MATERIALS AND METHODS: Black-blood multislice images of the heart along anatomic orientations and triggered to end diastole were obtained from healthy human subjects at 3T using rapid STEAM MRI sequences with five-eighths partial Fourier encoding and variable flip angles. Single-shot STEAM images at 2.5 x 2.5 mm2 in-plane resolution and 6-mm section thickness were recorded in 230 msec from individual heartbeats. Improved signal-to-noise ratio (SNR) and higher spatial resolution of 2.0 x 2.0 mm2 and 1.5 x 1.5 mm2 were achieved by segmented multishot STEAM MRI with interleaved k-space acquisitions (160 msec each) from several heartbeats. In a single breathhold covering 18 heartbeats selected applications employed either three segments with six sections or six segments with three sections. RESULTS: Because stimulated echoes (STEs) dephase signals from moving spins, rapid STEAM images are free from blood signal contamination. The method offers a flexible tradeoff between spatial resolution, imaging speed (i.e., number of segments), and volume coverage (i.e., number of sections). CONCLUSION: Rapid STEAM MRI of the heart emerges as a simple technique for multislice imaging of the myocardial wall with efficient flow suppression.


Subject(s)
Heart/anatomy & histology , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Adult , Humans , Image Processing, Computer-Assisted , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...