Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745994

ABSTRACT

The COVID-19 pandemic instigated massive production of critical medical supplies and personal protective equipment. Injection moulding (IM) is considered the most prominent thermoplastic part manufacturing technique, offering the use of a large variety of feedstocks and rapid production capacity. Within the context of the European Commission-funded imPURE project, the benefits of IM have been exploited in repurposed IM lines to accommodate the use of nanocomposites and introduce the unique properties of nanomaterials. However, these amendments in the manufacturing lines highlighted the need for targeted and thorough occupational risk analysis due to the potential exposure of workers to airborne nanomaterials and fumes, as well as the introduction of additional occupational hazards. In this work, a safety-oriented failure mode and effects analysis (FMEA) was implemented to evaluate the main hazards in repurposed IM lines using acrylonitrile butadiene styrene (ABS) matrix and silver nanoparticles (AgNPs) as additives. Twenty-eight failure modes were identified, with the upper quartile including the seven failure modes presenting the highest risk priority numbers (RPN), signifying a need for immediate control action. Additionally, a nanosafety control-banding tool allowed hazard classification and the identification of control actions required for mitigation of occupation risks due to the released airborne silver nanoparticles.

2.
Polymers (Basel) ; 12(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961922

ABSTRACT

Life cycle assessment is a methodology to assess environmental impacts associated with a product or system/process by accounting resource requirements and emissions over its life cycle. The life cycle consists of four stages: material production, manufacturing, use, and end-of-life. This study highlights the need to conduct life cycle assessment (LCA) early in the new product development process, as a means to assess and evaluate the environmental impacts of (nano)enhanced carbon fibre-reinforced polymer (CFRP) prototypes over their entire life cycle. These prototypes, namely SleekFast sailing boat and handbrake lever, were manufactured by functionalized carbon fibre fabric and modified epoxy resin with multi-walled carbon nanotubes (MWCNTs). The environmental impacts of both have been assessed via LCA with a functional unit of '1 product piece'. Climate change has been selected as the key impact indicator for hotspot identification (kg CO2 eq). Significant focus has been given to the end-of-life phase by assessing different recycling scenarios. In addition, the respective life cycle inventories (LCIs) are provided, enabling the identification of resource hot spots and quantifying the environmental benefits of end-of-life options.

3.
Micromachines (Basel) ; 10(12)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795128

ABSTRACT

The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.

SELECTION OF CITATIONS
SEARCH DETAIL
...