Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(6)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34731833

ABSTRACT

The experimental knowledge of the AlSb monolayer with double layer honeycomb structure is largely based on the recent publication (Le Qinet al2021ACS Nano158184), where this monolayer was recently synthesized. Therefore, the aim of our research is to consequently explore the effects of substitutional doping and vacancy point defects on the electronic and magnetic properties of the novel hexagonal AlSb monolayer. Besides experimental reports, the phonon band structure and cohesive energy calculations confirm the stability of the AlSb monolayer. Its direct bandgap has been estimated to be 0.9 eV via the hybrid functional method, which is smaller than the value of 1.6 eV of bulk material. The majority of vacancy defects and substitutional dopants change the electronic properties of the AlSb monolayer from semiconducting to metallic. Moreover, the MgSbimpurity has demonstrated the addition of ferromagnetic behavior to the material. It is revealed through the calculation of formation energy that in Al-rich conditions, the vacant site of VSbis the most stable, while in Sb-rich circumstances the point defect of VAlgets the title. The formation energy has also been calculated for the substitutional dopants, showing relative stability of the defected structures. We undertook this theoretical study to inspire many experimentalists to focus their efforts on AlSb monolayer growth incorporating different impurities. It has been shown here that defect engineering is a powerful tool to tune the properties of novel AlSb two-dimensional monolayer for advanced nanoelectronic applications.

2.
Phys Chem Chem Phys ; 23(42): 24336-24343, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34676853

ABSTRACT

Driven by the fabrication of bulk and monolayer FeTe2 (ACS Nano, 2020, 14, 11473-11481), we explore the lattice, dynamic stability, electronic and magnetic properties of FeTeS and FeSeS Janus monolayers using density functional theory calculations. The obtained results validate the dynamic and thermal stability of the FeTeS and FeSeS Janus monolayers examined. The electronic structure shows that the FeTe2 bulk yields a total magnetization higher than the FeTe2 monolayer. FeTeS and FeSeS are categorized as ferromagnetic metals due to their bands crossing the Fermi level. So, they can be a good candidate material for spin filter applications. The biaxial compressive strain on the FeTe2 monolayer tunes the bandgap of the spin-down channel in the half-metal phase. By contrast, for FeTeS, the biaxial strain transforms the ferromagnetic metal into a half-metal. The electric field applied to the FeSeS monolayer in a parallel direction transforms the half-metal to a ferromagnetic metal by closing the gap in the spin-down channel.

3.
Nanotechnology ; 33(7)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34673552

ABSTRACT

Motivated by the recent experimental discovery of C6N7monolayer (Zhaoet al2021Science Bulletin66, 1764), we show that C6N7monolayer co-doped with C atom is a Dirac half-metal by employing first-principle density functional theory calculations. The structural, mechanical, electronic and magnetic properties of the co-doped C6N7are investigated by both the PBE and HSE06 functionals. Pristine C6N7monolayer is a semiconductor with almost isotropic electronic dispersion around the Γ point. As the doping of the C6N7takes place, the substitution of an N atom with a C atom transforms the monolayer into a dilute magnetic semiconductor, with the spin-up channel showing a band gap of 2.3 eV, while the spin-down channel exhibits a semimetallic phase with multiple Dirac points. The thermodynamic stability of the system is also checked out via AIMD simulations, showing the monolayer to be free of distortion at 500 K. The emergence of Dirac half-metal in carbon nitride monolayer via atomic doping reveals an exciting material platform for designing novel nanoelectronics and spintronics devices.

4.
Phys Chem Chem Phys ; 23(42): 24301-24312, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34673868

ABSTRACT

Very recently, the 2D form of BeO monolayer has been successfully fabricated [Hui Zhang et al., ACS Nano, 2021, 15, 2497]. Motivated by these exciting experimental results on 2D layered BeO structures, the effect of atom adsorption, substitutional doping and vacancy defects on the electronic and magnetic properties of a hexagonal BeO monolayer have been systematically investigated employing density functional theory-based first-principles calculations. We found out that BeO monolayer is a semiconductor with an indirect band gap of 5.9 eV. Next, a plethora of atoms (27 in total) were adsorbed on the surface of BeO monolayer to tailor its electronic properties. The bond length, work function, difference in charge and magnetic moment were also calculated for all modifications covering the vacancy defects and substitutional doping. The band gap is also supplied for these changes, showing how these adjustments can provide amazing opportunities in granting a variety of options in band gap engineering and in transforming the BeO monolayer from a semiconductor to a dilute magnetic semiconductor or half-metal in view of different applications. The formation energy of the defects was also computed as an important indicator for the stability of the defected structures, when created in a real experiment. We have theoretically demonstrated several possible approaches to modify the properties of BeO monolayer in a powerful and controllable manner. Thus, we expect to inspire many experimental studies focused on two dimensional BeO growth and property tuning, and exploration for applications in advanced nanoelectronics.

5.
Phys Chem Chem Phys ; 23(40): 23389, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34612240

ABSTRACT

Correction for 'Van der Waals heterostructure of graphene and germanane: tuning the ohmic contact by electrostatic gating and mechanical strain' by A. Bafekry et al., Phys. Chem. Chem. Phys., 2021, DOI: 10.1039/D1CP03632G.

6.
Phys Chem Chem Phys ; 23(34): 18752-18759, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612413

ABSTRACT

In this work, motivated by the fabrication of an AlSb monolayer, we have focused on the electronic, mechanical and optical properties of AlSb and InSb monolayers with double-layer honeycomb structures, employing the density functional theory approach. The phonon band structure and cohesive energy confirm the stability of the XSb (X = Al and In) monolayers. The mechanical properties reveal that the XSb monolayers have a brittle nature. Using the GGA + SOC (HSE + SOC) functionals, the bandgap of the AlSb monolayer is predicted to be direct, while InSb has a metallic character using both functionals. We find that XSb (X = Al, In) two-dimensional bodies can absorb ultraviolet light. The present findings suggest several applications of AlSb and InSb monolayers in novel optical and electronic usages.

7.
J Phys Condens Matter ; 34(1)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34571501

ABSTRACT

In a very recent accomplishment, the two-dimensional form of biphenylene network (BPN) has been fabricated. Motivated by this exciting experimental result on 2D layered BPN structure, herein we perform detailed density-functional theory-based first-principles calculations, in order to gain insight into the structural, mechanical, electronic and optical properties of this promising nanomaterial. Our theoretical results reveal the BPN structure is constructed from three rings of tetragon, hexagon and octagon, meanwhile the electron localization function shows very strong bonds between the C atoms in the structure. The dynamical stability of BPN is verified via the phonon band dispersion calculations. The mechanical properties reveal the brittle behavior of BPN monolayer. The Young's modulus has been computed as 0.1 TPa, which is smaller than the corresponding value of graphene, while the Poisson's ratio determined to be 0.26 is larger than that of graphene. The band structure is evaluated to show the electronic features of the material; determining the BPN monolayer as metallic with a band gap of zero. The optical properties (real and imaginary parts of the dielectric function, and the absorption spectrum) uncover BPN as an insulator along thezzdirection, while owning metallic properties inxxandyydirections. We anticipate that our discoveries will pave the way to the successful implementation of this 2D allotrope of carbon in advanced nanoelectronics.

8.
Phys Chem Chem Phys ; 23(37): 21196-21206, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34532725

ABSTRACT

Recent exciting developments in synthesis and properties study of the Germanane (GeH) monolayer have inspired us to investigate the structural and electronic properties of the van der Waals GeH/Graphene (Gr) heterostructure by the first-principle approach. The stability of the GeH/Gr heterostructure is verified by calculating the phonon dispersion curves as well as by thermodynamic binding energy calculations. According to the band structure calculation, the GeH/Gr interface is n-type Ohmic. The effects of different interlayer distances and strains between the layers and the applied electric field on the interface have been investigated to gain insight into the van der Waals heterostructure modifications. An interlayer distance of 2.11 Å and compressive strain of 6% alter the contact from Ohmic to Schottky status, while the electric field can tune the GeH/Gr contact as p- or n-type, Ohmic, or Schottky. The average electrostatic potential of GeH/Gr and the Bader charge analysis have been used to explain the results obtained. Our theoretical study could provide a promising approach for improving the electronic performance of GeH/Gr-based nano-rectifiers.

9.
Phys Chem Chem Phys ; 23(28): 15216-15223, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34235514

ABSTRACT

Motivated by the recent successful synthesis of highly crystalline ultrathin BiTeCl and BiTeBr layered sheets [Debarati Hajra et al., ACS Nano, 2020, 14, 15626], herein for the first time, we carry out a comprehensive study on the structural and electronic properties of BiTeCl and BiTeBr Janus monolayers using density functional theory (DFT) calculations. Different structural and electronic parameters including the lattice constant, bond lengths, layer thickness in the z-direction, different interatomic angles, work function, charge density difference, cohesive energy and Rashba coefficients are determined to acquire a deep understanding of these monolayers. The calculations show good stability of the studied single layers. BiTeCl and BiTeBr monolayers are semiconductors with electronic bandgaps of 0.83 and 0.80 eV, respectively. The results also show that the semiconductor-metal transformation can be induced by increasing the number of layers. In addition, the engineering of the electronic structure is also studied by applying an electric field, and mechanical uniaxial and biaxial strain. The results show a significant change of the bandgaps and that an indirect-direct band-gap transition can be induced. This study highlights the positive prospect for the application of BiTeCl and BiTeBr layered sheets in novel electronic and energy conversion systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...