Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Bioinform Comput Biol ; 22(2): 2450005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779780

ABSTRACT

Enzymes catalyze diverse biochemical reactions and are building blocks of cellular and metabolic pathways. Data and metadata of enzymes are distributed across databases and are archived in various formats. The enzyme databases provide utilities for efficient searches and downloading enzyme records in batch mode but do not support organism-specific extraction of subsets of data. Users are required to write scripts for parsing entries for customized data extraction prior to downstream analysis. Integrated Customized Extraction of Enzyme Data (iCEED) has been developed to provide organism-specific customized data extraction utilities for seven commonly used enzyme databases and brings these resources under an integrated portal. iCEED provides dropdown menus and search boxes using typehead utility for submission of queries as well as enzyme class-based browsing utility. A utility to facilitate mapping and visualization of functionally important features on the three-dimensional (3D) structures of enzymes is integrated. The customized data extraction utilities provided in iCEED are expected to be useful for biochemists, biotechnologists, computational biologists, and life science researchers to build curated datasets of their choice through an easy to navigate web-based interface. The integrated feature visualization system is useful for a fine-grained understanding of the enzyme structure-function relationship. Desired subsets of data, extracted and curated using iCEED can be subsequently used for downstream processing, analyses, and knowledge discovery. iCEED can also be used for training and teaching purposes.


Subject(s)
Databases, Protein , Enzymes , Software , Enzymes/chemistry , Enzymes/metabolism , Computational Biology/methods , User-Computer Interface , Internet
2.
Front Bioinform ; 1: 709951, 2021.
Article in English | MEDLINE | ID: mdl-36303781

ABSTRACT

Development of vaccines and therapeutic antibodies to deal with infectious and other diseases are the most perceptible scientific interventions that have had huge impact on public health including that in the current Covid-19 pandemic. From inactivation methodologies to reverse vaccinology, vaccine development strategies of 21st century have undergone several transformations and are moving towards rational design approaches. These developments are driven by data as the combinatorials involved in antigenic diversity of pathogens and immune repertoire of hosts are enormous. The computational prediction of epitopes is central to these developments and numerous B-cell epitope prediction methods developed over the years in the field of immunoinformatics have contributed enormously. Most of these methods predict epitopes that could potentially bind to an antibody regardless of its type and only a few account for antibody class specific epitope prediction. Recent studies have provided evidence of more than one class of antibodies being associated with a particular disease. Therefore, it is desirable to predict and prioritize 'peptidome' representing B-cell epitopes that can potentially bind to multiple classes of antibodies, as an open problem in immunoinformatics. To address this, AbCPE, a novel algorithm based on multi-label classification approach has been developed for prediction of antibody class(es) to which an epitope can potentially bind. The epitopes binding to one or more antibody classes (IgG, IgE, IgA and IgM) have been used as a knowledgebase to derive features for prediction. Multi-label algorithms, Binary Relevance and Label Powerset were applied along with Random Forest and AdaBoost. Classifier performance was assessed using evaluation measures like Hamming Loss, Precision, Recall and F1 score. The Binary Relevance model based on dipeptide composition, Random Forest and AdaBoost achieved the best results with Hamming Loss of 0.1121 and 0.1074 on training and test sets respectively. The results obtained by AbCPE are promising. To the best of our knowledge, this is the first multi-label method developed for prediction of antibody class(es) for sequential B-cell epitopes and is expected to bring a paradigm shift in the field of immunoinformatics and immunotherapeutic developments in synthetic biology. The AbCPE web server is available at http://bioinfo.unipune.ac.in/AbCPE/Home.html.

3.
4.
BioData Min ; 9: 8, 2016.
Article in English | MEDLINE | ID: mdl-26843893

ABSTRACT

[This corrects the article DOI: 10.1186/s13040-015-0067-z.].

5.
BioData Min ; 8: 31, 2015.
Article in English | MEDLINE | ID: mdl-26516349

ABSTRACT

BACKGROUND: Diverse types of biological data, primary as well as derived, are available in various formats and are stored in heterogeneous resources. Database-specific as well as integrated search engines are available for carrying out efficient searches of databases. These search engines however, do not support extraction of subsets of data with the same level of granularity that exists in typical database entries. In order to extract fine grained subsets of data, users are required to download complete or partial database entries and write scripts for parsing and extraction. RESULTS: BioDBExtractor (BDE) has been developed to provide 26 customized data extraction utilities for some of the commonly used databases such as ENA (EMBL-Bank), UniprotKB, PDB, and KEGG. BDE eliminates the need for downloading entries and writing scripts. BDE has a simple web interface that enables input of query in the form of accession numbers/ID codes, choice of utilities and selection of fields/subfields of data by the users. CONCLUSIONS: BDE thus provides a common data extraction platform for multiple databases and is useful to both, novice and expert users. BDE, however, is not a substitute to basic keyword-based database searches. Desired subsets of data, compiled using BDE can be subsequently used for downstream processing, analyses and knowledge discovery. AVAILABILITY: BDE can be accessed from http://bioinfo.net.in/BioDB/Home.html.

SELECTION OF CITATIONS
SEARCH DETAIL
...